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Abstract. We offer an approach to the smooth 4-dimensional Schoenflies conjecture via
pseudo-isotopy theory.

0. Introduction

The 4-dimensional smooth Schoenflies conjecture (SS4) asserts that every embedded smooth
3-sphere in the 4-sphere bounds a smooth 4-ball. In 1958 Barry Mazur [Ma1] proved that
such spheres bound topological 4-balls, as a special case of a more general result. A conse-
quence of his elementary but strikingly original proof is the following.

Theorem 0.1. (Mazur [Ma2], unpublished) If SS4 is false, then there exists a diffeomorphism
φ : S1×S3 → S1×S3 such that φ is homotopic to id but φ(x0×S3) is not isotopic to x0×S3,
even after lifting to any finite sheeted covering of S1 × S3.

On the other hand it was recently proved in [BG] that there exists diffeomorphisms φ ∈
Diff0(S1 × S3) such that φ(x0 × S3) is not isotopic to x0 × S3. Here Diff0(S1 × S3) denotes
the topological group of diffeomorphisms of S1 × S3 whose elements are homotopic to id, a
group of index-8 in Diff(S1 × S3).

This paper introduces the study of Diff0(S1 × S3) through the use of pseudo-isotopy
theory in an attempt to address the Schoenflies conjecture. Theorem 4.6 and Proposition
7.1 equate SS4 to a certain interpolation problem involving a regular homotopy whose finger
and Whitney discs coincide near their boundaries. We use this to give a condition for
showing that a Poincare 4-ball (i.e. a compact contractible 4-manifold with boundary S3) is
a Schoenflies 4-ball (i.e. a closed complementary region of an embedded 3-sphere in S4.).

Along the way we obtain the following.

Theorem 0.2. If φ ∈ Diff0(S1 × S3), then φ is stably isotopic to id.

This means that for k sufficiently large, after isotoping φ to be the id on a tkB4, and then
extending to φ̂ ∈ Diff0(S1 × S3#kS

2 × S2) where the sum is taken inside the B4’s and φ̂ is

id within the summands, then φ̂ is isotopic to id.

Remarks 0.3. i) This is more generally true for diffeomorphisms of 4-manifolds pseudo-
isotopic to id for which the Hatcher - Wagoner [HW] obstruction vanishes. See §3.

ii) In 1986 Frank Quinn [Qu] showed that a pseudo-isotopy f from id to φ ∈ Diff0(M), M
a closed simply connected 4-manifold, is stably isotopic to id. Both Perron [Pe] and Quinn
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[Qu] showed that such an f is topologically isotopic to id. This implies that φ is stably
isotopic to id and topologically isotopic to id.

We prove the following characterization of Schoenflies balls.

Theorem 0.4. Every Schoenflies ball has a carving/surgery presentation.

This means that it is obtained by a finite process starting with the 4-ball, attaching
finitely many 2-handles, then carving finitely many 2-handles, then attaching finitely many
2-handles, etc., with every step happening in the 4-sphere. Actually we show that the
presentation can be chosen to be of a special type called an optimized F |W -carving/surgery
presentation. See Definitions 9.6 and 9.10 and Theorem 11.6.

Underlying Coventions: Unless said otherwise, this paper works in the smooth category
and diffeormorphisms between oriented manifolds are orientation preserving.
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1. The Schoenflies conjecture and Diff0(S1 × S3)

Before proving Mazur’s Theorem 0.1 we record the following basic fact.

Lemma 1.1. Let E,W ∈ S4 be distinct points. Two oriented 3-spheres Σ0,Σ1 ⊂ S4\{E,W}
are isotopic in S4 \{E,W} if and only if they are isotopic in S4 and they represent the same
class in H3(S4 \ {E,W}). �

Proof of Theorem 0.1: View S4 as [−∞,∞]× S3 where −∞× S3 and ∞× S3 are identified
to points, which are respectively denoted W and E. If Σ ⊂ S4 is an oriented 3-sphere, then
after isotopy, we can assume that Σ ⊂ (0, 1)×S3 and homologous to 0×S3 in (−∞,∞)×S3.
The Z-action t×S3 → t+1×S3 induces a covering π : R×S3 → S1×S3. Let Σ′ = π(Σ) and
S ′0 = π(0 × S3). By Theorem 3.13 [BG], there exists a diffeomorphism φ ∈ Diff0(S1 × S3)
such that φ(S ′0) = Σ′. If after lifting to a finite cover Σ′ is isotopic to S ′0, then Σ is isotopic
to S0 in (−∞,∞) × S3 and hence S4. Thus if Σ is not isotopic to S0, then φ satisfies the
conclusion of Theorem 0.1. �

Remark 1.2. On the other hand if Σ′ ⊂ S1× S3 lifts to Σ ⊂ R× S3 ⊂ S4 which is isotopic
to 0 × S3 viewed in S4, then by Lemma 1.1 it would be isotopic to S ′0 after lifting to a
sufficiently high finite cover.
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Proof of Mazur’s Schoenflies Theorem: With notation as in the previous proof, let F denote
the S3-fibration of S1 × S3 by pushing forward the standard fibration by φ. This lifts to a
S3-fibration of R × S3 with Σ as a leaf. Thus, as in Mazur’s original Schoenflies proof, the
closure of each component of S4 \Σ is a smooth S3× [0,∞) whose end limits on the missing
point. �

Lemma 1.3. If Σ0,Σ1 are disjoint, isotopic and non separating 3-spheres in S1 × S3, then
they bound a smooth product.

Proof. This is immediate if Σ0 = x0 × S3. By [BG] we can assume this is the case. �

Definition 1.4. Call a compact oriented contractible 4-ball ∆ with ∂∆ = S3 a Schoenflies
4-ball if ∆ embeds in S3. A Schoenflies sphere is an oriented embedded 3-sphere in S4.

The following is a restatement of a theorem of Bob Gompf.

Theorem 1.5. (Gompf [Go]) Two Schoenflies balls ∆0,∆1 ⊂ S4 are diffeomorphic if and
only if they are ambiently isotopic.

Proof. It suffices to consider the case ∆0 ∩ ∆1 = ∅. Gompf shows that there exists a dif-
feomorphism φ : (S4,∆0)→ (S4,∆1). By precomposing φ if necessary by a diffeomorphism
supported away from ∆0 ∪∆1 we can assume that φ is isotopic to id. �

Notation 1.6. If f ∈ Diff0(S1 × S3), then f̂ will denote a lift to a finite sheeted covering

space that will be determined by context and f̃ will denote a lift to R × S3. Unless said
otherwise the particular lift is immaterial.

Definition 1.7. Two diffeomorphisms f, g ∈ Diff0(S1×S3) are S-equivalent if there are lifts

f̂ and ĝ of f and g to a finite sheeting covering space such that f̂(Q) is isotopic to ĝ(Q) for
some Q of the form t× S3.

Let f, g ∈ Diff0(S1 × S3). We say that f interpolates to g ∈ Diff0(R× S3) if there exists

a h̃ ∈ Diff0(R × S3) such that h̃ coincides with f̃ (resp. g̃) on the −∞ (resp. +∞) end of
R× S3.

Proposition 1.8. Let f, g ∈ Diff0(S1 × S3). The following are equivalent.
i) f and g are S-equivalent.

ii) If P ⊂ S1 × S3 is a non separating 3-sphere, then f̃(P̃ ) is isotopic to g̃(P̃ ). Here P̃ is
any lift of P to R× S3.

iii) If P ⊂ S1×S3 is a non separating 3-sphere, then there exists a finite sheeted covering

space V̂ such that f̂(P̂ ) is isotopic to ĝ(P̂ ). Here P̂ is any lift of P to V̂ .
iv) f interpolates to g and g interpolates to f in Diff0(R× S3).

v) After passing to finite sheeted covering space f̂ is isotopic to ĝ modulo Diff0(B4 fix ∂).

Proof. i) implies v): Let Q = t× S3. Pass to a finite sheeted covering V̂ of S1 × S3 so that

f̂(Q̂) is isotopic to ĝ(Q̂). By [BG] f̂ and ĝ are isotopic modulo Diff(B4 fix ∂). �

v) implies iii): Pass to a finite sheeted covering so that v) holds. After isotopy f̂ = ĝ modulo

Diff(B4). Since we can assume that the 4-ball is disjoint from P̂ the result follows. �

iii) if and only if ii): The only if direction is immediate and the other follows from the

fact that an ambient isotopy of f̃(P̃ ) to g̃(P̃ ) in R × S3 can be taken to be compactly
supported. �
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iii) implies i): �

ii) implies iv): We show f interpolates to g, Consider f̃ , g̃ : R×S3 → R×S3. Using Cerf [Ce2]

after a compactly supported isotopy of f̃ to f̃ ′, we can assume that f̃ ′|(N(Q̃)) = g̃|N(Q̃). Let
L denote the closed complementary region lying to the −∞-side of Q and R the component
to the +∞ side. Define h : R×S3 → R×S3 by h|L = f̃ ′|L and h|R = g̃. A similar argument
shows that g interpolates to f . �

iv) implies ii): Consider an interpolation h̃ of f̃ to g̃. Since h̃(t×S3) is isotopic to h̃(t′×S3)
our assertion follows. �

Corollary 1.9. Interpolation is an equivalence relation. �

Any f ∈ Diff0(S1× S3) is isotopic to one supported in S1×B, for any 3-ball B ⊂ S3 and
hence Diff0(S1 × S3) is abelian and composition is isotopic to the contenation of two such
maps supported on disjoint S1 ×B3’s. E.g. see [BG]. From this the next result follows.

Proposition 1.10. The groups of Schoenflies spheres, Schoenflies balls and S-equivalence
classes of Diff0(S1 × S3) are naturally isomorphic. The isomorphism between Schoenflies
balls and Schoenflies 3-spheres is induced by passing to the boundary, using the outward first
orientation convention. The bijection between S-equivalence classes and spheres is given by
f → i ◦ f̃(x0 × S3). Furthermore,

i) (law of composition) boundary connect sum for Schoenflies balls and composition for
S-equivalence classes.

ii) (inverse) passing to complementary Schoenflies ball in S4 for Schoenflies balls, reversing
orientation of Schoenflies spheres and inverse in Diff0(S1 × S3) for S-equivalence classes.

Notation 1.11. If M is an oriented manifold, then M̄ denotes M oppositely oriented. If ∆
is a Schoenflies ball, then −∆ denotes the complementary Schoenflies ball.

Proposition 1.12. If ∆4,Σ3, f correspond under Proposition 1.10, then ∆̄4 is diffeomorphic
to rS3(∆4) and corresponds to rS3(Σ3) and rS3frS3 := f̄ . Here rS3 denotes reflection in S3

either in R × S3 or S1 × S3. Also rS3(∆4) is oriented as a subspace of S4 and rS3(Σ3) has
the corresponding boundary orientation. �

Conjecture 1.13. If ∆ is a Schoenflies ball, then −∆ = ∆̄. Equivalently, if ∆ is a Schoen-
flies ball, then ∆× I = B5.

The following characterization of the Schoenflies problem is well known.

Definition 1.14. If x ∈ int(M), then let Mx denote M \ x. We say that a diffeomorphism
φ : Mx → Ny induces the diffeomorphism φ′ : M → N if there exists a compact 4-ball
B ⊂M such that x ∈ int(B) and φ|M \B = φ′|M \B.

Theorem 1.15. The Schoenflies conjecture is true if and only if for every pair of compact 4-
manifolds M,N a diffeomorphism φ : Mx → Ny induces a diffeomorphism φ′ : M → N . �

Remark 1.16. Deleting an interior point is not in general sufficient to make homeomorphic
but non diffeomorphic manifolds diffeomorphic. Indeed, Akbulut’s original cork [Ak] is an
example of a compact contractible 4-manifold A with an involution f on ∂A such that f
extends to a homeomorphism but not a diffeomorphism on A. This property continues to
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hold even if A is punctured for Akbulut shows that there exists a curve β ⊂ ∂A that slices
in A such that f(β) does not slice.

This leads to the following well known conjecture, the forward direction of which is im-
mediate.

Conjecture 1.17. The Poincare ball ∆ is a Schoenflies ball if and only if every knot K ⊂ ∂∆
that slices in ∆, slices in B4.

2. Pseudo-Isotopy vs Stable Isotopy

Definition 2.1. Let M be a compact oriented 4-manifold. A pseudo-isotopy from φ0 to φ1

is a diffeomorphism f : M × I →M × I such that f |M ×0 = φ0×0, f |∂M × I = φ0× id and
f |M×1 = φ1×1. In all cases in this paper, φ0|∂M = id. Let Mk denote M#kS

2×S2, where
k ∈ N. Here all the sums are taken in disjoint 4-ballsB1, · · · , Bk. We say Φ : Mk×[0, 1]→Mk

is a stable isotopy from φ0 to φ1 if for t = 0, 1, Φt|Bi#S
2 × S2 = id and the induced maps

Φ̂t : M →M which are id on each Bi, are isotopic to φ0 and φ1 respectively. When φ0 = id
we say that φ1 is the map induced by the stable isotopy. Let DiffΣ

0 (M) denote the subgroup
of Diff0(M) generated by elements stably isotopic to id.

Lemma 2.2. If Φ is a stable isotopy from φ0 to φ1, then Φ−1 defined by Φ−1
t = (Φt)

−1 is
a stable isotopy from φ−1

0 to φ−1
1 and Φ̄ defined by Φ̄t = Φ1−t is a stable isotopy from φ1 to

φ0. �

Lemma 2.3. Pseudo-isotopy and stable isotopy are equivalence relations on Diff0(M) where
M is a compact oriented 4-manifold. �

If M is a closed oriented simply connected 4-manifold and φ ∈ Diff0(M), then by Kreck
[Kr] p. 645 or [Qu] φ is pseudo-isotopic to id. Quinn [Qu] used this to show that φ is stably
isotopic to id. In the topological category both Perron [Pe] and Quinn [Qu] showed that φ is
isotopic to id, so no stabilization is needed. Ruberman [Ru] constructed diffeomorphisms of
closed simply connected 4-manifolds that are topologically but not smoothly isotopic to id.

Using the seminal work of Cerf [Ce3]; Hatcher, Wagoner and Igusa found three obstructions
for a pseudo-isotopy of a compact manifold M to be isotopic to id when dim(M) ≥ 7. See
[HW], [Ha2], [Ig1]. As detailed in [HW] various elements of the Hatcher-Wagoner theory
function when dim(M) ≥ 4. The first obstruction, Σ(f) ∈ Wh2(π1(M)), is defined when
dim(M) ≥ 4 and is the exact obstruction to having a nested eye Cerf diagram with only
critical points of index 2 and 3 and a gradient like vector field (glvf) that does not involve
handle slides and has independent birth and death points. Chapter 5 §6 of [HW] shows that
under these circumstances Σ(f) = 0. The converse follows from Proposition 3, P. 214 [HW]
and its proof. Call such a nested eye 1-parameter family qt together with its glvf vt a Hatcher
- Wagoner family.

We now briefly outline Quinn’s proof that if M is a compact simply connected 4-manifold
and φ ∈ Diff0(M) where φ is pseudo-isotopic to id, then φ is stably isotopic to id. Let f
denote a pseudo-isotopy from id to φ. Consider a 1-parameter family qt : M × I → [0, 1], t ∈
[0, 1] so that q0 is the standard projection to [0, 1], q1 is the projection to [0, 1] induced from
the pseudo-isotopy and qt is a path from q0 to q1 in the space of smooth maps M × I → [0, 1]
that agrees with q0 on N(∂M × I). We can assume that this is a Hatcher - Wagoner
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family. Quinn observed that after some modification of the 1-parameter family, analogous to
reordering critical points in the proof of the h-cobordism theorem, the essential information
of the family can be succinctly captured in what we call the middle middle level picture, see p.
353-354 [Qu]. While Quinn did this for the innermost eye, one readily proves the general case
which we now state. Start with Mk, where k is the number of eye components, each S2×S2

summand is standardly parametrized and (x0, y0) ∈ S2 × S2. Call the x0 × S2 2-spheres the
standard red spheres Rstd := {Rstd

1 , · · ·Rstd
k } and the S2 × y0 2-spheres the standard green

spheres Gstd := {Gstd
1 , · · · , Gstd

k }. Now do a finite sequence of pairwise disjoint finger moves
to the red spheres to obtain R = {R1, · · · , Rk} with new intersections with Gstd, one pair
for each finger move. Suppose that there is a set of pairwise disjoint Whitney discs such
that applying the corresponding Whitney moves to R yields a new system of red spheres
that δij pairwise geometrically intersect the components of Gstd. The middle middle level
picture is the situation after the finger moves. Thus in Mk we have two sets of spheres
{R1, · · · , Rk}, {Gstd

1 , · · · , Gstd
k } and two sets F = {fp},W = {wq} of Whitney discs that

cancel the excess Ri/G
std
j intersections. The F Whitney discs are called finger discs. Doing

Whitney moves using these discs undoes the finger moves. Starting with the middle middle
level picture we create a 1-parameter family of maps qt : M × [0, 1] × t → [0, 1] and glvf’s
vt, t ∈ [0, 1], where q1/2 has k critical points of index-2 and k critical points of index-3,
Gstd
j ⊂ q−1

1/2(1/2) is the ascending sphere of the j’th index-2 critical point and Ri ⊂ q−1
1/2(1/2)

is the descending sphere of the i’th index-3 critical point. Using {wq} the handle structure
on M × I × 1/2 is modified, as is the corresponding (qt, vt), to one whose ascending and
descending spheres intersect geometrically δij. The index-2 and index-3 critical points are
then cancelled at death critical points after which qt is nonsingular. These modifications
enable an extension of (q1/2, v1/2) to (qt, vt), t ∈ [1/2, 1]. Similarly {fp} enables an extension
(qt, vt), t ∈ [0, 1/2]. This can be done so that the resulting the resulting (qt, vt) is a Hatcher
- Wagoner family and the resulting pseudo isotopy is isotopic to f .

Remarks 2.4. i) See Chapter 1 [HW] for basic facts about 1-parameter families including
descriptions of their low dimensional strata as well as terminology used in this section.

ii) Using the light bulb theorem [Ga1], [ST] the red spheres obtained by doing the Whitney
moves can be isotoped back to Rstd and thus the pseudo-isotopy is determined, up to isotopy,
by a loop in the embedding space of red spheres. Our original motivation for proving the
light bulb theorem was constructing such a loop when M = S1 × S3.

When π1(M) = 1, Quinn showed that after finitely many stabilizations of the pseudo-
isotopy f and modification of the glvf, the ascending and descending spheres from the critical
points of the innermost eye component have no excess intersections. That component can
be eliminated by Cerf’s unicity of death lemma Chapter 3 [Ce3], [Ch] or P. 170 [HW]. By
stabilization of the pseudo-isotopy f we mean first isotope f to be id on a B4×I, then replace
the B4×I with a (B4#S2×S2)×I and extend f to be the identity on the (B4#S2×S2)×I.
Finally, by induction on components, a 1-parameter family qt can be constructed having no
critical points and hence a sufficiently stabilized f is isotopic to id and therefore so is a
stabilized φ.

The following is the main result of this section. Its proof will be crucial for applications.
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Theorem 2.5. Let φ ∈ Diff0(M), where M is a compact oriented 4-manifold. Then id
is stably isotopic to φ if and only if id is pseudo-isotopic to φ by a pseudo-isotopy f with
Σ(f) = 0.

We start with the following well known result.

Lemma 2.6. Let M be a compact 4-manifold and (qt, vt), (q
′
t, v
′
t) be two Hatcher - Wagoner

1-parameter families. If for some s ∈ [0, 1], not a birth or death point, qt = q′t and vt = v′t
for t ≤ s and neither (qt, vt) nor (q′t, v

′
t) have excess 3/2 intersections for t ≥ s, then the

associated pseudo-isotopies f, f ′ are isotopic.

Proof. We will assume that s = 1/2, is after all the births and before the deaths. The proof
in the general case is similar. The 1-parameter family rt := q1−t for t ≤ 1/2 and rt := q′t for
t ≥ 1/2 with corresponding glvf’s is of the nested eye type without handle slides or excess
3/2 intersections, hence the singular locus can be eliminated by uniqueness of death. Thus
induced pseudo-isotopy g is isotopic to id. Since f ′ = g ◦ f , the result follows. �

Proof of Theorem 2.5: First assume that id is pseudo-isotopic to φ by the pseudo-isotopy f
with Σ(f) = 0, hence is realized by a Hatcher - Wagoner 1-parameter family (qt, vt).

Using elements of the proof of Theorem 9 [Gay] we can arrange the following. For
t ∈ [0, 1/8] ∪ [7/8, 1], qt is non singular. For t ∈ (1/8, 1/4) (resp. (3/4, 7/8)) k births
(resp. deaths) occur. All the excess 3/2 intersections occur when t ∈ (1/4, 3/4). For
t ∈ [1/4, 3/4], qt = q1/4. Also, for such t, vt = v1/4 when restricted to q−1

t ([0, 1/4] ∪ [3/4, 1]).
The k critical points of index-2 (resp. index-3) lie in q−1

t (1/8, 1/4) resp. q−1
t (3/4, 7/8) all

with distinct critical values. This requires a bit of preliminary work, e.g. as noted in [Gay]
the descending spheres of the 2-handles in M×0× t are simple closed curves that may follow
non trivial paths in Emb(S1,M), however it can be arranged that these paths are constant
for t ∈ [1/4, 3/4] and all the movement shoved into t ∈ (3/4, 3/4 + ε). We can assume that
v1/4 is the model gradient like vector field on M×I×1/4 arising from the births and has the
following features. Both v−1

1/4(1/4) and v−1
1/4(3/4) are diffeomorphic to Mk and respectively

denoted Mk × 1/4 × 1/4 and Mk × 3/4 × 1/4 with the first factors equated via v1/4. Let
Gstd
i ⊂Mk×1/4×1/4 (resp. Rstd

j ⊂Mk×3/4×1/4) denote the ascending (resp. descending)

sphere of the i’th 2-handle (resp. j’th 3-handle). Under v1/4 the Gstd
i ’s flow to spheres in

Mk×3/4×1/4 that δij intersect the Rstd
j ’s. Under v1/4 (resp. −v1/4) the Gstd

i ’s (resp. Rstd
j ’s)

flow to discs {E1, · · · , Ek} ⊂M × 1× 1/4 (resp.{D1, · · · , Dk} ⊂M × 0× 1/4) spanning the
ascending (resp. descending) spheres of the 3-handles (resp. 2-handles). When projected
to M the Di’s intersect δij the Ej’s and if Ni denotes a neighborhood of Di ∪ Ei, then
v1/4|(M \ ∪ki=1 int(Ni)) × I = v0. Use v1/4 to define a product structure on q−1

1/4([1/4, 3/4]).

The induced map Mk × 1/4× 1/4→Mk × 3/4× 1/4 when projected to the first factor is id
and denoted Φ1/4. It is constructed from the id on M (which is induced from v0), replacing
each Ni by an S2 × S2 \ int(B4) and then extending the id, i.e. the map Φ1/4 on Mk is a
stabilization of id on M .

We now show how to remember the id pseudo-isotopy as we pass from (q0, v0) to (q1, v1)
and use it to construct a stable isotopy Φ from id to a φ′. We will show that φ′ is isotopic
to φ in the next paragraph. Since qt = q1/4 for t ∈ [1/4, 3/4], ∪t∈[1/4,3/4]q

−1
t ([1/4, 3/4]) is

diffeomorphic to Mk × [1/4, 3/4] × [1/4, 3/4] := C, the core of the 1-parameter family. The
core has two natural parameterizations, the first using the glvf v1/4 on each q−1

t ([1/4, 3/4])
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which we call the standard parametrization and a second using vt on q−1
t ([1/4, 3/4]) which

we call the Ψ parametrization. Having defined Gstd
i × 1/4 × 1/4 and Rstd

j × 3/4 × 1/4 the

standard parametrization allows us to identify the spheres Gstd
i × s × t and Rstd

j × s × t.

Since v1/4 and vt agree on q−1
t ([0, 1/4]) we canonically identify ∪t∈[1/4,3/4]q

−1
t (1/4) with Mk×

1/4× [1/4, 3/4]. We define the parametrization Ψ : C → C by Ψ|Mk × 1/4× [1/4, 3/4] = id,
Ψ|Mk × [1/4, 3/4]× 1/4 = id, Ψ fixes each Mk × s× t setwise and Ψ takes v1/4 flow lines to
vt flow lines. Since v1/4 and vt agree on q−1

t [3/4, 1], each q−1
s0

(3/4) is canonically identified
with q−1

s1
(3/4) for s0, s1 ∈ [1/4, 3/4] and these identifications agree with the ones given by

the standard parametrization. In particular, Rstd
j ×3/4×3/4 is the descending sphere of the

j’th 3-handle.
Since Ψ−1(Rstd

j × 3/4 × 3/4) has geometric δij intersection with Gstd
i × 3/4 × 3/4, we

can isotope Ψ−1|Rstd
j × 3/4 × 3/4, j = 1, · · · , k to id via an isotopy staying transverse to

∪Gstd
i × 3/4 × 3/4 by the light bulb theorem [Ga1], [ST]. It follows that we can homotope

the vt’s t ∈ (3/4 − α/2, 3/4 + α/2), keeping vt = v1/4 on q−1
t ([0, 1/4] ∪ [3/4, 1]), such that

with respect to the new vt’s, Ψ−1|Rstd
j × 3/4× 3/4 = id. Also, no new intersections between

the ascending and descending spheres of the critical points are created. Continuing to call
our new glvf family vt, the resulting pseudo-isotopy f is unchanged. Note that when π1(M)
has 2-torsion [ST] applies since Ψ−1(Rstd

j × 3/4 × 3/4) is isotopic to Rstd
j × 3/4 × 3/4 in

Mk × 3/4 × 3/4 and so the Freedman-Quinn obstruction = 0. After a second application
of the light bulb theorem we can additionally assume that Ψ| ∪ Gstd

i × 3/4 × 3/4 = id.
Here we use the fact that homotopy implies isotopy keeping the dual sphere fixed pointwise
provided that the intersection is preserved under the original map. Using uniqueness of
regular neighborhoods we can further assume that

(∗) Ψ| ∪ki=1 N(Gstd
i ∪Rstd

i )× 3/4× 3/4 = id

where for s ∈ [1/4, 3/4], N(Gstd
i ∪ Rstd

i ) × s × 3/4 = q−1
3/4(s) ∩ Ni × I × 3/4. Define Φs =

Ψ|Mk × s× 3/4, s ∈ [1/4, 3/4], viewed as a map from Mk to Mk. It is a stable isotopy from
id to some φ′ ∈ Diff(M). Call a vector field vt as above satisfying (∗) stable-inducing.

We now show that φ′ is isotopic to φ. Define Ψ̂ : M × I × 3/4 → M × I × 3/4 by

Ψ̂|q−1
3/4([0, 1/4]) = id, Ψ̂|q−1

3/4([1/4, 3/4]) = Ψ, Ψ̂|(q−1
3/4([3/4, 1]) ∩ (Ni × I)) = id all i and

Ψ̂|q−1
3/4([3/4, 1]) ∩ (M × I \ (int(∪Ni) × I)) the extension of Ψ which takes v1/4 flow lines

to v3/4 flow lines. Recall that v1/4 = v3/4 in that region. Next define a 1-parameter fam-
ily (q′t, v

′
t), t ∈ [0, 1] by (q′t, v

′
t) = (qt, vt) for t ∈ [0, 3/4] and for t ∈ [3/4, 1] first define

Ψ̂t : M × I × (1− t)→M × I × t to be the map which agrees with Ψ̂ on the M × I factor.

Next define q′t = q1−t ◦ Ψ̂−1
t and v′t = (Ψ̂t)∗(v1−t). By construction the pseudo-isotopy f ′

arising from (q′t, v
′
t) is from id to φ′. By Lemma 2.6, φ′ is isotopic to φ.

Conversely, suppose that we are given a stable isotopy Φs, s ∈ [1/4, 3/4] from id to φ.
We can assume that Φs = Φ1/4 (resp. Φ3/4) for s ε-close to 1/4 (resp. 3/4). Construct a
1-parameter family (pt, ωt), t ∈ [0, 1] as follows. First, for t ∈ [0, 3/4] let qt be as above
and define pt = qt. Next define a vector field ω on M × I × [0, 3/4] which restricts to a
glvf ωt on each M × I × t as follows. For t ∈ [0, 1/4] let ωt = vt. Also for t ∈ [1/4, 3/4]
define ωt = v1/4 when restricted to p−1

t ([0, 1/4] ∪ [3/4, 1]). For t ∈ [3/4 − ε, 3/4] define
ωt along Mk × [1/4, 3/4] × t by Φ∗(v1/4), where given t, define Φ(x, s, 1/4) = (Φs(x), s, t).
Use a partition of unity argument to extend our partially defined ω to a vector field on
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M × I × [0, 3/4] which restricts to a glvf on each M × I × t. As in the proof of the forward
direction, extend the 1-parameter family to t ∈ [0, 1] to obtain a Hatcher - Wagoner family
yielding a pseudo-isotopy from id to φ. �

Definition 2.7. The operation of obtaining a stable isotopy (resp. 1-parameter family) from
a 1-parameter family (resp. stable isotopy) as above is called extracting (resp. transplanting).

Remark 2.8. Our stable isotopy is found by peering inside (M×I)×I. In contrast, assuming
π1(M) = 1, Quinn stablizes the pseudo-isotopy f itself and then inductively modifies the
1-parameter family to one without critical points to turn the pseudo-isotopy into an isotopy.

Definition 2.9. Let PI(M) denote the group of isotopy classes of pseudo-isotopies of M
starting at id. Let PIΣ(M) denote the subgroup of classes f with Σ(f) = 0. Let DiffΣ

0 (M)
denote the subgroup of Diff0(M) generated by elements pseudo-isotopic to id by a pseudo-
isotopy f with Σ(f) = 0.

Remark 2.10. By [HW] p.12, Wh2(G) = 0 if G is either free abelian or free, hence if π1(M)
is either free or free abelian, then by [HW] Σ(f) = 0 for all pseudo-isotopies of M . Therefore,
for such M Diff0(M) = DiffΣ

0 (M).

Corollary 2.11. If φ ∈ Diff0(S1 × S3), then φ is stably isotopic to id.

Proof. In 1968 Lashoff - Shaneson [LS] and Sato [Sa] proved that if φ ∈ Diff0(S1 × Sq),
q = 3, 4 then φ is pseudo-isotopic to id. Now apply Remark 2.10 and Theorem 2.5. �

Remark 2.12. The punchline of Sato’s proof uses Theorem III from the Appendix of [Ke]
to prove that a certain homotopy q+1-sphere Σq+1 is smoothly standard, but Theorem III
is not applicable here for dimensional reasons. However, he shows that Σq+1 is the union
of two Bq+1’s glued along their boundary, hence is standard by Cerf [Ce2]) when q = 3 or
Kervaire - Milnor [KM] and Smale [Sm2] when q = 4.

Corollary 2.13. If φ ∈ Diff0(M) and π1(M) is either free or free abelian, then φ is pseudo-
isotopic to id if and only if φ is stably isotopic to id. �

Question 2.14. If Σ(f) = 0 is f stably isotopic to id?

The following result was independently proven by David Gay [Gay]. He stated it for
M = S4, however his proof extends verbatim to the generality below. See also [KK] when
M is simply connected.

Theorem 2.15. Let M be a compact oriented 4-manifold. Let Rk denote a disjoint union
of k ordered 2-spheres.

i) There is a homomorphism γk : π1(Emb(Rk,Mk;Rstd))→ π0(DiffΣ
0 (M)).

ii) π0(DiffΣ
0 (M)) = ∪∞k=1 Im(γk).

iii) If [α] ∈ π1(Emb(Rk,Mk;Rstd)) and [β] = [h ∗ α ∗ k] where for all t, ht(Rk) ∩ Gstd =
kt(Rk) ∩ Gstd = δij, then γk[α] = γk[β].

Proof. We abuse notation by identifying Rk with Rstd. Let αt : Rstd → Mk with α0 =
α1 = id. Use parametrized isotopy extension to obtain the extension αt : Rstd ∪ Gstd →Mk.
After a further isotopy fixing Rstd pointwise, we can assume that α1 restricts to id near
Rstd ∩ Gstd. By [Ga1], [ST] and uniqueness of regular neighborhoods we can further assume
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that α1|N(Rstd ∪Gstd) = id without modifying α1|Rstd. Thus αt extends to a stable isotopy
of id and hence induces a φ ∈ Diff0(M). The isotopy class of φ is independent of choices
since composing one with the inverse of the other produces a stable isotopy isotopic to
one which fixes Rstd and hence induces a diffeomorphism isotopic to id by Lemma 2.6. It
similarly follows that the isotopy class is independent of the representative of [α]. Since
the concatenation of loops gives rise to the composition of stable isotopies the proof of i) is
complete. Given φ ∈ π0(DiffΣ

0 (M)), construct a pseudo-isotopy from id to φ and then extract
a stable isotopy Φ from an associated 1-parameter family to produce an α with γk([α]) = φ.
Here αs = Φs|Rstd. Finally for iii), create 1-parameter families by transplanting stable
isotopies arising from α and β, then use Lemma 2.6 to conclude that the associated pseudo-
isotopies are isotopic and hence so are the induced elements of Diff0(M). �

Remarks 2.16. i) There is the analogous result with Gstd in place of Rstd.
ii) The original motivation to prove the light bulb theorem was to prove i), ii) for M =

S1 × S3.

Definition 2.17. Let πMk
: Mk × [1/4, 3/4] × [1/4, 3/4] → Mk be the projection. Let

vt be a stable-inducing vector field inducing the parametrization Ψ on the core. Define
ΨT : Mk × [1/4, 3/4]× [1/4, 3/4]→ Mk × [1/4, 3/4]× [1/4, 3/4], the ΨT -parametrization by
ΨT |Mk × 3/4× [1/4, 3/4] = id, ΨT fixes each Mk × s× t setwise and ΨT takes v1/4 flow lines
to vt flow lines. Define αs,t = πMk

◦ΨT |Rstd × s× t.

Lemma 2.18. If Ψ and ΨT are the parametrizations of the core of a Φ-transplanted stable-
isotopy of the compact 4-manifold M, then αs = αs,3/4, s ∈ [1/4, 3/4]. As a based loop αs is
homotopic to α1/4,1−s. The glvf ωt can be chosen so that these loops are C1-close.

Proof. Since vt is stable-inducing, for s ∈ [1/4, 3/4], Ψ|N(Rstd∪Gstd)×s×3/4 = ΨT |N(Rstd∪
Gstd)×s×3/4 and hence αs = Φs|Rstd = πMk

◦Ψ|Rstd×s×3/4 = πMk
◦ΨT |Rstd×s×3/4 =

αs,3/4. Now αs,3/4 is homotopic to α1/4,1−s ∗ αu,1/4 ∗ α3/4,v, where u, v ∈ [1/4, 3/4]. Note
that these last two paths are the id on Rstd. Now define the 1-parameter family of glvfs wt
on Mk × [1/4, 3/4] × [1/4, 3/4] so that wt agrees with v3/4 on Mk × s × t when s ≥ 1 − t,
agrees with v1/4 when s ≤ 1 − t and then use a partition of unity to smooth out along
Mk × (1 − t) × t. Since α1/4,1−t is approximately αt,1−t which is approximately αt,3/4 = αt,
the result follows. �

Remark 2.19. The path α1/4,t, t ∈ [1/4, 3/4] is the result of flowing the descending sphere
Rstd×3/4× t into Mk×1/4× t using the glvf ωt and then projecting to the first factor. This
path is homotopic to the reverse of αs arising from the stable isotopy which we can assume
is C1-close to it.

3. Finger - Whitney Systems

Let Φ : Mk × I → Mk be a stable isotopy from id to φ ∈ Diff0(M) and let Rstd,Gstd be
defined as in §2. We can assume that Φs(Rstd) is transverse to Gstd except for finitely many
s ∈ I corresponding to finger and Whitney moves and all the finger moves occur before the
Whitney moves. For more details see [FQ] pp. 19-20 and [Qu] p. 353.

Definition 3.1. A finger-Whitney or F |W system (G,R,F ,W) on Mk consists of two trans-
verse sets of algebraically dual, pairwise disjoint embedded 2-spheres G := {Gj},R := {Ri},
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(i.e. 〈Ri, Gj〉 = δij) with trivial normal bundles in Mk together with two complete collections
of Whitney discs F := {fp},W := {wq}. This means that performing Whitney moves to
R using either set of discs produces a set of spheres geometrically dual to G. We require
that M is diffeomorphic to the manifold obtained by surgering Mk along the G family, i.e.
replacing neighborhoods of the Gi’s by S1 ×B3’s. Call F the set of finger discs and W the
Whitney discs. Call a F |W system arising from a stable isotopy of M as in the introduction
an induced F |W system

Remark 3.2. Finger-Whitney systems have their origin in §4 [Qu], where G and R are as
in the middle middle level picture. With the conventions of this paper the roles of finger and
Whitney discs are reversed. See Remark 2.19 and the proof of the following.

Lemma 3.3. Let M be a compact orientable 4-manifold. A F |W system on Mk determines
a conjugacy class φ(G,R,F ,W) ⊂ π0(Diff0(M)). Conversely, given φ ∈ π0(DiffΣ

0 (M)), there
exists an F |W system on some Mk inducing φ.

Proof. Let R′ (resp. R′′) be obtained from R by doing the Whitney moves F (resp. W).
Since M is diffeomorphic to Mk surgered along G, there is a ζk ∈ Diff(Mk) such that
ζk(Rstd) = R′ and ζk(Gstd) = G. To see this note that after surgery the components of
Gstd and G become circles respectively spanned by 0-framed discs arising from Rstd and R′
and that a ζ ∈ Diff0(M) takes one set to the other. It therefore suffices to consider the case
that (G,R′) = (Gstd,Rstd).

The F |W system gives rise to a loop αt ∈ Emb(Rk,Mk;Rstd) obtained by first isotoping
to R by the finger moves, then to R′′ by the Whitney moves and then back to Rstd by
an isotopy fixing G setwise. The last isotopy follows from [Ga1] or [ST]. Again, since R′′
is isotopic to Rstd ⊂ Mk, it follows that FQ(Rstd,R′′) = 0. By Theorem 2.15 αt induces
an element of π0(Diff0(M)). Note that different identifications of (G,R′) with (Gstd,Rstd),
using the method above, will change the resulting class in π0(Diff0(M)) by conjugation in
π0(Diff0(M)).

Conversely, if Φ is a stable isotopy of id to φ, then after isotopy we can assume that
Φs(Rstd) is a generic isotopy such that all the finger (resp. Whitney) moves with Gstd occur
before (resp. after) s = 1/2. lt follows that (Gstd,Φ1/2(Rstd),F ,W) is a F |W system on Mk,
inducing φ where W (resp. F) is the set of Whitney (resp. finger) discs. �

Corollary 3.4. A F |W system on M induces a stable isotopy whose associated element of
π0(Diff0(M)) is unique up to conjugacy. �

Corollary 3.5. If φ ∈ π0(Diff0(S1 × S3)), then there exists a F |W system inducing φ. A
given F |W system on S1 × S3 induces a well defined element of π0(Diff0(S1 × S3)).

Proof. Since Diff0(S1 × S3) is abelian, the second statement follows from Lemma 3.3. The
first follows from the fact that π0(Diff0(S1 × S3)) = π0(DiffΣ

0 (S1 × S3)). �

Remark 3.6. Our original argument for the existence of a F |W system for φ ∈ Diff0(S1×S3)
is as follows. A given φ is pseudo-isotopic to id by [LS], [Sa]. It has a Hatcher - Wagoner
1-parameter family by [HW]. Now apply Quinn’s method as outlined in §2.

We now specialize to φ ∈ Diff0(S1 × S3), although much of what follows applies more
generally. Denote S1 × S3 by V , S1 × S3#kS

2 × S2 by Vk and V∞ := R × S3#∞S
2 × S2,

where the sums are locally finite and go out both ends. In practice V∞ = Ṽk for some k.
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Notation 3.7. Denote the S2 × S2 factors of Vk by S2 × S2
i . By S2 × S2

i we mean a
S2 × S2 \ intB4, where B4 is disjoint from Rstd

i ∪ Gstd
i . Denote by Σi the 3-sphere that

separates off S2 × S2
i from the rest. When (G,R,F ,W) is an F |W system on Vk, then

we will assume that G = Gstd and R is isotopic to Rstd. Let Z = Vk \ ∪ki=1 int(S2 × S2
i ).

Let π : Z → S1 be the restriction of the projection map from S1 × S3 → S1. Viewing
S1 as [0, k] with 0 identified with k, we can assume that π(Σi) = Nε(i). Indices are often

chosen mod k. Here π̃, Z̃, S̃2 × S2
j, R̃i, G̃j denote fixed lifts to Ṽk, where the indices ∈ Z.

Let ρ : R × S3 → R × S3 be the covering translation that shifts everything k units, e.g.
ρ(R̃j) = R̃j+k.

Definition 3.8. Let w ∈ F ∪W . We say the winding ω(w) = r ∈ Q if r = (q − p)/k where
w lifts to a Whitney disc between R̃p and G̃q. Say that w and w′ are winding equivalent if
both w,w′ connect Ri to Gj and ω(w) = ω(w′).

Remark 3.9. Winding depends on how π was chosen, however it is well defined when w is
between Ri and Gi. Also, when w,w′ are Whitney discs between Ri and Gj, then the truth
of ω(w) 6= ω(w′) is independent of π. It follows that the winding equivalence relation is well
defined.

Definition 3.10. Let F = {f1, · · · , fp} and {[fi1,j1,ω1 ], · · · , [fim,jm,ωm ]} the winding equiva-
lence classes, where fi,j,ω denotes the class where a finger goes from Ri to Gj with winding
ω. We say that R is in arm hand finger (AHF) form with respect to F if it is constructed
as follows. For the class [fi,j,ω] with |[fi,j,ω]| elements, remove a disc from Rstd

i and replace it
by a disc ai,j,ω called an arm which consists of a thin annulus ⊂ S2×S2

i that goes essentially
straight from Ri to Σi, then a thin annulus ⊂ Z that goes essentially straight to Σj and
winds ω about Z, then a disc in S2 × S2

j called a hand with |[fi,j,ω]| fingers. Finally, F are

the discs associated to the fingers. When i = j and ω = 0, then ai,i,0 ⊂ S2 × S2
i . See Figure

1.
In similar manner define AHF form of R with respect to W . And in analogous manner

define AHF form of Gstd with respect to either F orW . This form is the result of an ambient
isotopy taking R to Rstd and Gstd to G where the latter is obtained from Gstd by attaching
arms hands and fingers which poke into Rstd, where the discs corresponding to the fingers
are the isotoped F or W discs as applicable.

Lemma 3.11. R can be isotoped into AHF form with respect to F as well as W via an
ambient isotopy that fixes Gstd setwise. Also Gstd can be isotoped into AHF form with respect
to F as well as W via an ambient isotopy.

Proof. We show how to isotope R into AHF form with respect to F . There exists a set of
pairwise disjoint finger arcs from Rstd to Gstd such that if R1 is the result of doing finger
moves to Rstd along these arcs and F1 is the resulting set of finger discs, then (R1,F1) is
isotopic to (R,F) via an isotopy fixing Gstd setwise. To see this let R′ be the result of
applying the F Whitney moves to R and noting (R,F) arises from R′ by finger moves along
finger arcs to Gstd. Now apply [Ga1] to isotope R′ to Rstd fixing Gstd setwise and consider
the finger arcs resulting from applying isotopy extension to the finger arcs from R′.

Since π1(Vk \ Gstd ∪Rstd) = Z, the result follows because we can isotope the finger arcs so
that each goes from an Rstd

i to Σi to Σj to Gstd
j by essentially straight arcs with the correct

winding and any two finger arcs corresponding to equivalent fingers are parallel. �
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Figure 1. Arm Hand Finger Form

Definition 3.12. If R is in arm hand finger form, then its auxiliary discs are the Whitney
discs near the hands as in Figure 1. Note that a hand with f fingers has f − 1 auxiliary
discs.

Definition 3.13. (F |W Moves) We define the following operations on F |W systems.
i) reverse: (G,R,F ,W)→ (G,R,W ,F).
ii) upside down: (G,R,F ,W)→ (R,G,W ,F)
iii) concatenation: (G1,R1,F1,W1) ∪ (G2,R2,F2,W2). This an F |W system on Vk1+k2

where the first F |W system is on Vk1 and the second on Vk2 . Here view S1 × S3 = S1 ×
B3 ∪∂ S1 ×B3 with each system of the concatenation supported in its own S1 ×B3.

Lemma 3.14. (F |W Operations)
i) φ(G,R,W ,F) = (φ(G,R,F ,W))−1 := φ−1(G,R,F ,W)
ii) φ(R,G,W ,F) = φ(G,R,F ,W)
iii) φ(G1,R1,F1,W1) ∪ (G2,R2,F2,W2)) = φ(G1,R1,F1,W1) ◦ φ(G2,R2,F2,W2).

Proof. i) If φ(G,R,F ,W) arises from the 1-parameter family (qt, vt), then φ(G,R,W ,F)
arises from (q1−t, v1−t). This produces a pseudo-isotopy from id to φ−1.
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ii) The loop βs := Φs|Gstd = πVk ◦ Ψ|Gstd × s × 3/4 induces φ. Let βs,t = πVk ◦ Ψ|Gstd ×
s × t. Then βs = βs,3/4 is homotopic to β1/4,1−u ∗ βv,1/4 ∗ β3/4,t, u, v, t ∈ [1/4, 3/4], which is
homotopic to β3/4,t since the first two loops are constant. Under ωt when projected to Vk,
(Gstd, α1/4,t(Rstd)) flows to (β3/4,t(Gstd),Rstd). Since α1/4,s approximates α1−s, as s increases
α1/4,t(Rstd) undergoes inverse Whitney and then inverse finger moves corresponding to the
F |W system associated to αs. This process flows under ωt to Gstd undergoing inverse Whitney
moves and then inverse finger moves corresponding to the F |W system obtained by flowing
the original system seen in Vk × 1/4× 1/2 to one in Vk × 3/4× 1/2.

iii) The pseudo-isotopy arising from φ(G1,R1,F1,W1) ◦ φ(G2,R2,F2,W2) is isotopic to
the concatenation of the pseudo-isotopies from (G1,R1,F1,W1) and (G2,R2, F2,W2). By
concatenation we mean, supported on disjoint vertical S1 ×B3 × I’s ⊂ S1 × S3 × I. �

Lemma 3.15. (factorization lemma) If (G,R,F1,F2), (G,R,F2,F3) are F |W systems on
Vk, then φ(G,R,F2,F3) ◦ φ(G,R,F1,F2) = φ(G,R,F1,F3).

Proof. The map φ(G,R,F1,F2) is induced by the following loop α12 in Emb(R1, Vk) where
R1 is the result of applying the F1 Whitney moves toR. First undo the F1 moves to get back
to R, then do the F2 Whitney moves to get R2, then isotope back to R1, say using the path
β transverse to G. The map φ(G,R,F2,F3) is induced by the loop α23 defined by starting
at R1, next applying the reverse of β to get back to R2, then applying the reverse F2 moves
to get back to R, then applying the F3 Whitney moves, then isotoping to R1 via an isotopy
transverse to G. But α12 ∗α23 is homotopic to the loop α13 that induces φ(G,R,F1,F3). �

The next result follows from Proposition 1.12 and the methods of this section.

Lemma 3.16. Let r denote a reflection of S1 × S3 across the S3 factor. If R, G and F are
invariant under r, then φ(G,R,F , W̄) = φ̄(G,R,F ,W) where W̄ = r(W). �

4. Interpolation

Recall from §1 that φ, φ′ ∈ π0(Diff0(S1 × S3)) are S-equivalent if they interpolate when
lifted to R × S3. In a similar manner we define S-equivalence for pseudo-isotopies, stable
isotopies, 1-parameter families and F |W systems and show that S-equivalence for any two
such structures is equivalent to S-equivalence for the associated element of π0(Diff0(S1×S3)).
We show that every structure of a given type is S-equivalent to the trivial one if and only
if the Schoenflies conjecture is true. We give conditions for interpolation of F |W systems
and give sufficient conditions for F |W systems to be S-equivalent to the trivial one. Finally
we state a slice missing slice disc problem related to F |W interpolation. Though they can
be often stated in more generality, results in this section are given for S1 × S3 which we
again denote by V . As before Vk will denote S1×S3#kS

2×S2, k ∈ Z≥0 and V∞ will denote
R× S3#∞S

2 × S2.

Definition 4.1. The pseudo-isotopy f is S-equivalent to g if there exists a pseudo-isotopy
h̃ : R×S3× I → R×S3× I such that h̃ coincides with f̃ near the −∞ end and with g̃ near
the +∞ end and we say that f̃ interpolates to g̃.

Let pt, qt, t ∈ [0, 1] be 1-parameter families of V × I → [0, 1] such that p0 = q0 is the
standard projection and both p1 and q1 are non singular. Then pt is S-equivalent to qt if
there exists a 1-parameter family r̃t : R × S3 × I → [0, 1], t ∈ [0, 1], such that r̃t coincides
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with pt (resp. qt) near the −∞ (resp. +∞) end, r̃0 is the standard projection and r̃1 is non
singular.

The stable isotopies Φ,Φ′ are S-equivalent if their lifts interpolate on V∞, i.e. if Φ is
defined on Vk and Φ′ on Vk′ , then after identifying the −∞ (resp. +∞) end of V∞ with the
−∞ (resp. +∞) end of Ṽk (resp. Ṽk′), there exists a stable isotopy on V∞ that coincides
with Φ̃ (resp. Φ̃′) near −∞ (resp. +∞).

The F |W systems (G,R,F ,W), (G ′,R′,F ′,W ′) are S-equivalent if their lifts interpolate
on V∞, i.e. there exists a F |W system on V∞ that agrees with (G̃, R̃, F̃ , W̃) near −∞ and
(G̃ ′, R̃′, F̃ ′, W̃ ′) near +∞. Here we require that the manifolds obtained by surgering G and
G ′ are diffeomorphic to R × S3. If these systems are S-equivalent and G ′ = G,R′ = R and
F ′ = F , then we say that W interpolates to W ′.

Proposition 4.2. If for i = 0, 1, fi is a pseudo-isotopy from id to φi, then f0 is S-equivalent
to f1 if and only if φ0 is S-equivalent to φ1. S-equivalence on pseudo-isotopies on V × I from
id to elements of Diff0(V ) is an equivalence relation.

Proof. Since S-equivalence is an equivalence relation on elements of Diff0(V ) and transitivity
for S-equivalence of pseudo-isotopies is routine, the first assertion implies the second. The
forward direction of the first assertion is immediate by definition.

We now show that if f is a pseudo-isotopy from id to φ and φ is S-equivalent to id then so
is f . Let J = S1×y×I, some y ∈ S3. Keeping S1×S3×0 fixed isotope f such f |N(J) = id.
Let g = f |V × I \ int(N(J)) and consider g̃ : R × B3 × I → R × B3 × I. In what follows
isotopies of g will be constant near the −∞ end as well as on R × ∂B3 × I ∪ R × B3 × 0.
Let Bt := t×B3 ⊂ R×B3 and ∆4

0 := g̃(B0 × I). It follows from the proof of Theorem 9.11
[BG] that since φ is S-equivalent to id,∆4

0 ∩ (R × B3 × 1) is ambiently properly isotopic to
B0 × 1 and hence we can assume by [Ce2] that g̃|N(B0 × 1) = id. Let s > 0 be sufficiently
large so that Bs × I ∩ ∆4

0 = ∅. Let ∆5 be the closure of the region between Bs × I and
∆4

0. Note that ∆5 is connected and contractible. Also, ∂∆5 is diffeomorphic to S4, again by
[Ce2], since ∂∆5 is the union of two 4-balls glued along their boundaries. It follows [Sm2]
that ∆5 is diffeomorphic to a 5-ball. Essentially by uniqueness of regular neighborhoods we
can ambiently isotope ∆4, and hence g̃, so that ∆4 = B0 × I := B4

0 . Since g̃|∂B4
0 = id it

follows that g̃|B4
0 ∈ Diff0(B4

0 fix ∂) and hence is pseudo-isotopic to id by [Br]. Therefore,
there is an h : R×B3 × I → R×B3 × I so that h|(−∞, 0]×B3 × I = g̃|(−∞, 0]×B3 × I,
h|[1,∞) × B3 × I = id and h|(R × B3 × 0) ∪ R × (∂B3 × I) = id. It follows that f is
S-equivalent to id. �

Proposition 4.3. The 1-parameter families q′t and qt are S-equivalent if and only if their
corresponding pseudo-isotopies f ′, f are S-equivalent. S-equivalence of 1-parameter families
is an equivalence relation.

Proof. If qt and q′t are S-equivalent, then by restriction so are f and f ′. The converse follows
from the contractibility of the space of smooth functions to [0, 1]. �

Proposition 4.4. The stable isotopies Φ,Φ′ are S-equivalent if and only their corresponding
transplantations f, f ′ are S-equivalent.

Before the proof we give the following.
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Corollary 4.5. The F |W systems (G,R,F ,W) and (G ′,R′,F ′,W ′) are S-equivalent if and
only if φ := φ(G,R,F ,W) and φ′ := φ(G ′,R′,F ′,W ′) are S-equivalent.

Proof. If the F |W systems are S-equivalent, then the proof of Lemma 3.3 shows that they
induce isotopic diffeomorphisms. Conversely, if φ and φ′ are S-equivalent, then the F |W
systems induce S-equivalent stable isotopies by the Proposition, hence the F |W systems are
S-equivalent. �

Proof of Proposition 4.4 The forward direction is immediate. To minimize notation we will
consider the case that Φ′ is the trivial stable isotopy and hence f ′ = id, since general case is
similar.

Suppose that (qt, vt) is a transplanted 1-parameter family arising from Φ. It has a nested
eye Cerf diagram only involving critical points of index-2 and 3 without 2/2 or 3/3 intersec-
tions, i.e. the corresponding 1-parameter family of handle structures on V × I has no handle
slides. Let (q̃t, ṽt) be the lift to R×S3× I. Consider the R-Cerf diagram on R× I× I. Here
a point (u, s, t) is labeled i, if q̃t has a critical point ∈ u × S3 × s of index-i. The R-Cerf
diagram of (q̃t, ṽt) is a locally finite union of single eye components, only involving critical
points of index-2 and 3, without 2/2 or 3/3 gradient intersections.

There is a generic 1-parameter family p̃t : R× S3 × I → [0, 1], t ∈ [0, 1] with glvf w̃t, such
that p̃t|(∞,−1]× S3× I = q̃t and p̃t|[1,∞)× S3× I is the standard projection to [0, 1] with
w̃t the vertical vector field. Now and in the future p̃t(R × S3 × i) = i for i close to 0 or
1; p̃t is the standard projection to [0, 1] for t close to 0 and p̃t is non singular for t close to
1. That such a (p̃t, w̃t) exists follows from the contractibility of smooth maps to [0, 1] and
the hypothesis that f is S-equivalent to id. Also all modifications of p̃t will be compactly
supported, hence will always respectively agree with q̃t and id near the negative and positive
ends of R × S3 × I. To complete the proof it suffices to show that (p̃t, w̃t) can be modified
so that the components of the R-Cerf diagram are eyes with edges labeled 2 and 3 with
independent births and deaths and without gradient intersections of type 2/2 or 3/3. The
methods of §2 and §3 then show that after a compactly supported modification of p̃t that
the resulting proper stable isotopy is an interpolation of Φ to the trivial stable isotopy.

We show that the proof of Proposition 3, Chapter VI [HW] extends to our setting. Since
p̃t is generic and for t ∈ [0, 1] agrees with either q̃t or the standard projection off of a uniform
compact set, all the components of the R-Cerf diagram are compact, only finitely many are
involved with 2/2 or 3/3 gradient intersections, or have critical points not of index-2 or 3
or have more than one birth or death, or have non independent births or deaths. Let C
denote the union of these components. Since the proof establishing the first paragraph of
p. 214 [HW] only requires that C be compact we can assume that the births and deaths of
p̃t are independent and the non birth/death critical points are of index-2 or 3. In a similar
manner we can assume that conclusions of Step 1 and Steps 2 of the proof of Proposition 3
hold for p̃t. Note that since dim(V ) = 4, the 3/3 gradient intersections are traded for 2/2
intersections. We continue to denote by C the components of the R-Cerf diagram involved
with 2/2 or 3/3 gradient intersections.

We now adapt Step 3 of the proof including its notation and terminology. Since the 2/2
intersections are supported in the compact set C, the argument of §6, Chapter V of [HW]
shows that the 2/2 gradient intersections correspond to a word x ∈ K2[Z[π1(R × S3 × I)]]
which is a subgroup of the Steinberg group St(Z[1]) =St(Z). Since W2 of the trivial group
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equals 1 [HW] there is a word w ∈ W (±1) ⊂ St(Z) such that x · w = 1 in St(r1,Z) for r1

sufficiently large. (See p. 9-10 [HW] for definitions of these algebraic objects. Note that
multiplicative group notation is used.) If r0 is the number of edges of C labeled 2 we can
assume that r0 ≤ r1. By modifying p̃t to add r1 − r0 trivial eye components we can assume
that r1 = r0. By Lemma 2.7 Chapter IV [HW], we can modify p̃t to add a new graphic
representing the word w and then using (0.1) V [HW] to join the graphics to create a new
one, still denoted C, whose word corresponding to the 2/2 gradient intersections is now x ·w.
By the proof of Theorem 1.1, Chapter II [HW] pt can be homotoped to eliminate these 2/2
gradient intersections via a homotopy that is supported on a compact region of R× S3 × I.
No 3/3 gradient intersections are created in the above process.

Note that both after the births and before the deaths there is geometric δij intersection
between the ascending spheres of the 2-handles and the descending spheres of the 3-handles.
The 3/2 gradient intersections preserve the δij pairing algebraically, so if there are no 2/2
or 3/3 gradient intersections, edges that are born together must die together. These facts
together with the fact that all the births and deaths are independent enable us to modify
(p̃t, w̃t), with compact support, so that the usual Cerf diagram is of the nested eye type,
though infinitely many of the components of the R-Cerf diagram may map to a single com-
ponent of the usual diagram. �

Putting this all together we have the following

Theorem 4.6. The following are equivalent
i) The Schoenflies conjecture is true,
ii) every φ ∈ Diff0(S1 × S3) is S-equivalent to id,
iii) every pseudo-isotopy on S1 × S3 × I from id is S-equivalent to id,
iv) every F |W system on S1 × S3 is S-equivalent to the trivial system,
v) every stable isotopy from the id on S1 × S3 is S-equivalent to id. �

Definition 4.7. Define an abelian group structure on F |W systems on V whose elements
are S-equivalence classes and whose addition is induced by the bijection with S-equivalence
classes of Diff0(V ).

We now describe interpolation operations on F |W systems.

Lemma 4.8. (Disjoint Replacement) Let (G,R,F ,W) and (G,R,F ,W ′) be F |W systems
on V . Suppose that ∂W = ∂W ′ and int(W) ∩ int(W ′) = ∅. Then the two systems are
S-equivalent.

Proof. Replace all the elements of W̃ near the +∞ end of V∞ by corresponding elements of
W̃ ′. �

Remarks 4.9. i) Often a weaker version of this condition suffices, e.g. ∂W = ∂W ′ and
int(W) ∩ int(W ′) 6= ∅ but after swapping W̃ discs by W̃ ′ discs near the +∞ end of V∞ the
resulting system of Whitney discs in V∞ is embedded.

ii) Examples arise when W ′ is obtained from W by introducing local knotting and linking
to its components.

iii) A variant where R1∩(W∪F), G1∩(W∪F) are a union of intervals, |G| = 1, ∂W = ∂W ′
and int(W) ∩ int(W ′) = ∅ was given by Quinn [Qu] §4.5. It does not require passing to a
cover and the operation does not change the isotopy class of the pseudo-isotopy. Quinn
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attributes this operation in higher dimensions to Igusa. Question: Does disjoint replacement
ever change the pseudo-isotopy class arising from F|W?

Geometrically dual spheres disjoint from the finger and Whitney discs provide another
useful tool.

Lemma 4.10. (Dual Sphere Lemma) Let (G,R,F ,W) be an F |W system supported on Vk.
Suppose there exist pairwise disjoint embedded spheres Hi1 , · · · , Him such that i1, · · · , im are
distinct elements of {1, 2, · · · , k} and

i) Hij ∩ (R∪ G) = Hij ∩ (Rij ∪Gij) = 1 and
ii) Hij ∩ (F ∪W) = ∅ all ij,

then φ(G,R,F ,W) is S-equivalent to an explicit F |W system supported on some Vk−m. In
particular if m = k, then this is the trivial system and φ is S-equivalent to id.

Proof. By reordering the S2 × S2
i factors we can assume that ij = j. Let S̃2 × S2

i, i ∈ Z
denote the preimages of the S2 × S2

i factors in Ṽk with the covering translation ρ shifting
everything k units. We can assume that R is in arm hand finger form.

If possible, reorder so that H1 ∩ G1 6= ∅, otherwise proceed as in four paragraphs below.
If |G1 ∩ R| = 1, then replace H1 by a translate of G1 and begin again. Observe that H1

has trivial normal bundle since [H1] = [R1] ∈ H2(Vk) and is embedded. Modify F̃ |W̃ as
follows. First, isotope R̃ to R̃1 by doing Whitney moves using exactly all f ∈ F̃ such that
∂f ∩ G̃j 6= ∅ where j = 1 modulo k and j ≥ 1. Denote by F̂ ⊂ F̃ these f ’s and F̃1 := F̃ \ F̂ .

Define Ŵ = {w ∈ W̃|∂w ∩Gj 6= ∅ where j = 1 modulo k and j ≥ 1} and W̃ ′ := W̃ \ Ŵ .

The isotopy from R̃ to R̃1 is supported very close to F̂ , in particular so that R̃1 remains
disjoint from the H̃i’s. If w ∈ W̃ ′ and w∩F̂ 6= ∅, then under isotopy extension w gets moved
to w1. Let W ′1 = W̃ ′ with these w’s replaced by their w1’s.

This creates two types of problems for (G̃, R̃1, F̃1, W̃ ′1) being an F |W system. If f ∈ F̂
and w ∈ W̃ ′ with | int f ∩w| = p, then w1 will have 2p new intersections with some G̃j while

if |w∩∂f | = p, then w1 will have p additional new intersections with some G̃j. In both cases,
j ≥ 1 and j = 1 modulo k. Now modify the w1’s by tubing off with copies of the component
of H̃1 that intersects G̃j. Let W̃1 denote the modified W̃ ′1.

Do all the modifications ρ-equivariantly. This means that if f ∈ F̂ , then the Whitney
move associated to ρ(f) is ρ of the Whitney move associated to f . Similarly, if w ∈ W̃ ′
and w ∩ F̂ 6= ∅, then (ρ(w))1 ∩ N(F̂) = ρ(w1) ∩ N(F̂). Here the isotopy of R̃ to R̃1 is

supported in N(F̂). Also the tubings are done ρ-equivariantly as well. It follows that if
(G̃, R̃1, F̃1, W̃1) is the new system, then the restriction to the +∞ end projects to a F |W
system (G,R1,F1,W1) on Vk such that |R1 ∩ G1| = 1 and H1, · · · , Hm satisfy the same
properties as before with this F |W system. Now replace H1 by a translate H ′1 of G1.

By induction on | ∪ Hi ∩ G| we now assume that for all i,Hi ∩ G = ∅. Abuse notation
by denoting the new F |W system arising from the construction of the previous paragraphs
by (G,R,F ,W). Now modify (G̃, R̃, F̃ , W̃) as follows. For i ≥ 1 and i = j modulo k,
where 1 ≤ j ≤ m, obtain R̃′i from R̃i by doing Whitney moves using all f ∈ F̃ such that
∂f ∩ R̃i 6= ∅. Again, the Whitney moves are done very close to these f ’s and ρ-equivariantly.
Let R̃1 denote the modified R̃. Let F̂ ⊂ F̃ denote the union of discs used in these moves
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and F̃1 = F̃ \ F̂ . Let Ŵ = {w ∈ W̃|w ∩ R̃i 6= ∅ for i ≥ 1 and i = j modulo k, where

1 ≤ j ≤ m}. Let W̃ ′ = W̃ \ Ŵ .
The problem with (G̃, R̃1, F̃1, W̃ ′) is that if w ∈ W̃ ′, then w ∩ R̃1 may have intersections.

Indeed if f ∈ F̂ , then each point of int(f) ∩ w will give rise to two such intersections and
each point of ∂f ∩ w will give rise to one. Modify W̃ ′ to W̃1 by ρ-equivariantly tubing off
each W̃ ′ ∩ R̃1 intersection with a copy of some H̃i. Project the +∞ end of (G̃, R̃1, F̃1, W̃1)
to Vk to obtain an F |W system satisfying the conclusions of the lemma.

If m = k, then the resulting F |W system will have F = ∅ and hence the corresponding φ
is S-equivalent to id. Also, the interpolation is done explicitly and algorithmically. Indeed,
the final F |W system on Vk can be explicitly constructed directly in Vk. �

Definition 4.11. A component component C = (GC ,RC ,FC ,WC) of (G,R,F ,W) consists
of those elements lying in a connected component of G ∪ R ∪ F ∪ W . It is supported in
Vk−m where m = |G \ GC | and is obtained from Vk by surgering the components of G \ GC .
Deletion of C is the F |W system obtained by removing C from (G,R,F ,W) and surgering
GC . Note that it is supported on Vm. We say that C is S-trivial if the induced map φ(C) is
S-equivalent to id. The F |W system is connected if it has one component.

Remarks 4.12. i) If each component of C̃ is compact, then C is S-trivial.
ii) If h ∈ Diff0(B4 fix ∂), then h is pseudo-isotopic to the identity so by [HW] and [Qu]

it arises from an F |W system on B4#kS
2 × S2 which can be viewed as an S-trivial F |W

system on S1 × S3.
iii) Concatenation can be viewed as the operation of addition of unions of components.

Lemma 4.13. If the F |W system (G,R,F ,W) is the disjoint union of components ∪mi=1(Gi,Ri,Fi,Wi),
then φ(G,R,F ,W) =

∑m
i=1 φ(Gi,Ri,Fi,Wi).

Proof. By disentangling in V∞ we will show that (G,R,F ,W) is S-equivalent to the concate-
nation of its components. We give the proof for m = 2, the general case follows by induction.
Suppose that |Gi| = ki. View R in arm hand finger form and let L denote an unknotted
S1× S2 which separates G1 ∪R1 ∪F1 ∪Rstd

1 from G2 ∪R2 ∪F2 ∪Rstd
2 . This means that the

closed complementary regions are copies of S1×B3#kiS
2×S2, i = 1, 2 respectively denoted

V ′k1 , V
′
k2

. Note that W1 is disjoint from G2 ∪R2 ∪ F2 which deformation expands to a space

X2 ⊂ V ′k2 which is N(G2 ∪ Rstd
2 ) union finitely many 1-handles. Using isotopy extension we

can assume that W1 ∩ X2 = ∅. Let W ′1 denote the result of isotoping W1 into V ′k1 via an

isotopy fixing G1 ∪R1 ∪Rstd
1 pointwise. The track of this isotopy may cross X2. In a similar

manner construct W ′2.
We now show that (G,R,F ,W) is S-equivalent to the concatenation of (G1,R1,F1,W ′1)

and (G2,R2,F2,W ′2). Consider Ṽk where k = k1 + k2. Let S̃2 × S2
i, i ∈ Z denote the

preimages of the S2 × S2 factors in Vk with the covering translation ρ shifting everything k
units. Order the factors so that when i = j modulo k, where 1 ≤ j ≤ k1 (resp. k1 + 1 ≤
j ≤ k), then these factors lift from V ′k1 (resp. V ′k2). Now let W̃1

i be a Whitney system for

G̃i ∪ R̃i that coincides with W̃i near −∞ and W̃ ′i near +∞ and W̃1
i ∩ X̃j = ∅ where i 6= j.

Such systems exist because we can ρ-equivariently isotope W̃i to W̃ ′i only near the +∞ end,
so don’t have unwanted intersections between moved and unmoved components of W̃1

i .
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To complete the proof we modify W̃ 1
1 to eliminate the finite set W̃ 1

1 ∩W̃ 1
2 . First isotope W̃1

1

off of W̃1
2 to obtain W̃2

1 at the cost of creating twice as many W̃2
1 ∩R̃2 intersections. Now R̃2

has pairwise disjoint geometrically dual spheres that are disjoint from G̃2∪W̃1
2 ∪W̃2

1 ∪G̃1∪R̃1

by doing Whitney moves to G̃2 using W̃ 1
2 and isotoping slightly. Finally create W̃3

1 by tubing
W̃2

1 to copies of the dual spheres, one for each point of W̃2
1 ∩ R̃2. �

Corollary 4.14. (Deletion Lemma) If F ′|W ′ is the subsystem of F|W with all S-trivial
components deleted, then φ(F|W) is S-equivalent to φ(F ′|W ′). �

Definition 4.15. Let G1 ⊂ G,R1 ⊂ R be such that G1 ∪ R1 is a union of components of
G∪R. We say that (G,R′,F ′,W ′) is obtained by contracting (G,R,F ,W) along G1,R1, ifR′
is obtained by replacingR1 byRstd

1 ; F ′ = {f ∈ F|∂f∩R1 = ∅};W ′′ = {w ∈ W|∂w∩R1 = ∅}
and W ′ =W ′′ modified as follows. If w ∈ W ′′ and int(w)∩Rstd

1 6= ∅, then modify by tubing
each intersection of w ∩Rstd

j with a copy of Gj.

Remark 4.16. Since we can assume that R is in AHF form with respect to F , Rstd
1 ∩ (R\

R1) = ∅.

Lemma 4.17. (Contraction Lemma) If (G,R′,F ′,W ′) is obtained from (G,R,F ,W) by
contracting along those components of G ∪ R whose induced maps into π1(Vk) are trivial,
then φ(G,R,F ,W) is S-equivalent to φ(G,R′,F ′,W ′). In particular, if all components of
G ∪ R are π1-inessential, then φ(G,R,F ,W) is S-equivalent to id.

Proof. Let U be a neighborhood of the +∞ end of Ṽk that is disjoint from some neighborhood
of the −∞ end. Replace all the lifts of the red spheres contained in all the π1-inessential
components of G ∪R which intersect U by the corresponding standard red spheres. Obtain
the new F̃ by deleting those elements whose boundaries intersected the red spheres that were
replaced. Obtain the new W̃ by also deleting those elements whose boundaries intersected
the replaced red spheres. Modify those remaining discs ∈ W̃ that intersect the new red
spheres by tubing off intersections using copies of their dual green spheres. �

Definition 4.18. We say that (G,R,F ,W) has fingers monotonically pointing up (resp.
down) if the S2 × S2 factors can be ordered in Vk so that in Ṽk, R̃i ∩ G̃j 6= ∅ implies j ≥ i
(resp. j ≤ i).

Proposition 4.19. If (G,R,F ,W) has either fingers monotonically pointing up or down,
then φ(G,R,F ,W) is S-equivalent to id.

Proof. Start with R in arm hand finger form and the S2 × S2 factors of Ṽk ordered as usual

with the covering translation ρ shifting S̃2 × S2
i to S̃2 × S2

i+k. It suffices to consider the
case that all the fingers point down. Replace R̃i, i ≥ 0 by R̃std

i and eliminate those elements
of F̃ ∪ W̃ which intersect R̃i, i ≥ 0. The cost is that some of the remaining elements of
W̃ may intersect R̃std

i , i ≥ 0, however there are only finitely many such intersections. Tube
off each of intersections with R̃std

i with a copy of G̃i. Since (G̃, R̃, F̃ , W̃) interpolates to
(G̃, R̃std, ∅, ∅) the result follows. �

Remark 4.20. This argument more generally shows the following. Given (G,R,F ,W) as
in Notation 3.5, define a graph G ⊂ S1 ×D2 as follows, where S1 = [0, k]/ ∼. The vertices
are {i × 0|i ∈ k}. To each finger f from Ri to Gj, construct an embedded directed edge



3-SPHERES IN THE 4-SPHERE AND PSEUDO-ISOTOPIES OF S1 × S3 21

from i × 0 to j × 0 which winds ω(f) about the S1. If no component of G contains both a
cycle representing a positive element of π1 and a cycle representing a negative element, then
φ(G,R,F ,W) is S-equivalent to id.

The next lemma shows that if F and W have common sets of dual spheres then they are
interpolable.

Definition 4.21. A set of pairwise disjoint embedded 2-spheres Nf = {N1, · · · , Nn} with
trivial normal bundles is said to be dual to F = {F1, · · · , Fn} if Nf ∩ G ∪ R = ∅ and
|Ni ∩ Fj| = δij. In a similar manner we define the notion of dual spheres to W .

Lemma 4.22. (Whitney duals exist) Given the F |W system (G,R,F ,W), there are dual
spheres Nf and Nw to F and W.

Proof. We argue as in [FQ]. Given Fi, let Di be a small 2-sphere near Fi∩Ri that intersects
Fi once and Ri twice. For each i, tube Di with two copies of the dual sphere R′i to Ri, where
R′i is as in Figure 1, to eliminate these points and thereby construct Ni and hence Nf . In a
similar manner construct Nw. �

Remarks 4.23. We can also construct Nf or Nw by starting with spheres that each intersect
G twice. In general Nf is not obviously equal Ng and Nf ∩Nw 6= ∅, which essentially is the
cause of our difficulties.

Lemma 4.24. Let (G,R,F ,W) be a F |W system such that the boundary germs of F coincide
with that of W.

i) If Nf = Nw, then φ(G,R,F ,W) is S-equivalent to id.
ii) IfW ′ is another set of Whitney discs with Nw = Nw′, then φ(G,R,F ,W) is S-equivalent

to φ(G,R,F ,W ′).

Proof. To prove i) we show that W̃ interpolates to F̃ . In Ṽk attempt to construct a inter-
polating system W̃ ′ by using W̃ near the −∞ end and F̃ near the +∞ end. While each
component of W̃ ′ is embedded a component coming from W̃ may intersect one from F̃ . Since
Ñf is a common system of dual spheres to both F̃ and W̃ we can use copies of components

of Ñf to tube away these intersections. In a similar manner prove ii) by showing that W
interpolates to W ′. �

Question 4.25. (Second Test Case) Let (G,R,F ,W) be such that {G} = G1, R1 has exactly
two fingers respectively of winding ±1 and each Whitney disc coincides with a finger disc in
a neighborhood of its boundary. Is φ(G,R,F ,W) S-equivalent to id?

Problem 4.26. (Slice missing slice disc problem). The knot K ⊂ S1×S2 = ∂S1×B3 shown
in Figure 2 bounds two obvious ribbon discs D1 and D2 such that the simple closed curve
α ⊂ S1 × S2 \K (resp. β) slices in S1 × B3 with a slice disc disjoint from D1 (resp. D2).
Is it true that for any smooth disc D bounded by K, one of α or β slices in the complement
of D?

5. Twisted Whitney discs

The goal of this section and the next is to show that a F |W system interpolates to one
whose finger and Whitney discs coincide along neighborhoods of their boundaries, i.e. their
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Figure 2. Slice Missing Slice Disc

boundary germs coincide. Such a F |W system is called boundary germ coinciding. To do
this we first arrange for their boundaries to coincide and then get neighborhoods of their
boundaries to coincide. The proof of the latter uses the main result of this section, Lemma
5.4 which subject to a certain technical condition that is satisfied by first passing to a finite
cover, asserts that given any system F of Whitney discs for G and R in S1×S3×#kS

2×S2,
there exists another system F ′ such that F ′ has prescribed twisting relative to that of F
and φ(G,R,F ,F ′) is S-equivalent to the identity.

We now define the twisting of one Whitney disc relative to another, by putting a neigh-
borhood of the boundary of one into a normal form relative to that of the other.

Definition 5.1. Let w0 and w1 be Whitney discs for the oriented, possibly disconnected
surfaces G and R in the oriented 4-manifold M such that ∂w0 = ∂w1. Let x and y denote
the points of wi ∩ G ∩ R where x is the point of −1 intersection. Define β = wi ∩ G and
α = wi∩R with α (resp. β) oriented from x to y (resp. y to x). See Figure 3 a) which shows
a 3-dimensional slice of M that contains w0. We assume that the orientation of G is given
by (ε1, ε2) and at y, R is oriented by (ε3, ε4). After an isotopy of w1 we can assume that it
coincides with w0 near both x and y. It follows that after a further isotopy, a neighborhood
of ∂w1 rotates p ∈ Z times along α and q ∈ Z times along β. Here q (resp. p) is the number
of full right hand twists about β (resp. α), the former using the convention of Figure 3
b). Figure 3 c) shows the projection to the 3-dimensional slice of a neighborhood of the
boundary of a (3, 1)-twisted disc to the (x, y, z) plane. We call w1 a (p, q)-twisted Whitney
disc rel w0 and we define tw(w1, w0) = (p, q).

Lemma 5.2. If w0, w1, and w2 are Whitney discs with ∂w2 = ∂w1 = ∂w0, then tw(w2, w0) =
tw(w2, w1) + tw(w1, w0). Also tw(w0, w1) = − tw(w1, w0). �

Lemma 5.3. If w1 ⊂ M is a (p, q)-twisted Whitney disc rel w0 and M has trivial second
Stiefel - Whitney class, then p+ q is even.

Proof. The normal bundle of the Whitney disc w1 for surfaces R and G has a framing which
when restricted to ∂D has, where applicable, one vector tangent to R and transverse to G
and the other tangent to G and transverse to R. On the other hand, starting with w0 perform
the boundary twisting operation, e.g. see [E] P. 216, to obtain an embedded pre-Whitney
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Figure 3. The boundary germ of a twisted Whitney disc

disc E whose boundary has a neighborhood that coincides with that of w1 but whose framing
differs from that of a genuine Whitney disc by p + q mod 2. By gluing E to w1 along their
boundaries and smoothing near the gluing we obtain a smoothly immersed 2-sphere in M
with normal bundle of Euler class equal to p + q mod 2. Since w2(M) = 0 it follows that
p+ q = 0 mod 2. �

The following is the main result of this section. As before Vk denotes S1×S3×#kS
2×S2

and G and R denote sets of algebraically dual embedded 2-spheres as in Definition 3.1.

Lemma 5.4. Let F = {f1, · · · , fn} be a complete set of Whitney discs for G = {G1, · · · , Gk}
and R = {R1, · · · , Rk} in Vk such that the winding of any hand from any Ri to Gi is equal
to zero. Let ((p1, q1), · · · , (pn, qn)) ∈ Z⊕ Z be such that for all i, pi + qi is even. Then there
exists a system of Whitney discs F ′ = {f ′1, · · · , f ′n} such that ∂F = ∂F ′, φ(G,R,F ,F ′) is
S-equivalent to the identity and for i = 1, 2, · · · , n, tw(f ′i , fi) = (pi, qi).

Remark 5.5. Let zr ∈ Gr ∩ Rr denote the point disjoint from all the fi’s. The winding
hypothesis implies that if there is a Whitney disc fi between Gr and Rr, then the element
of π1(Vk) corresponding to a loop starting at zr that follows Rr to a point of Gr ∩ Rr ∩ fi,
then follows Gr back to zr is homotopically trivial.

Proof. Step 1 : The lemma holds when (pi, qi) = (0, 0) for all i > 1 and either (p1, q1) =
(0,±2) or (±2, 0).

Proof of Step 1. Suppose that f1 cancels points of Gr ∩Rs. We consider the (p1, q1) = (2, 0)
case as the other cases are similar. Use the boundary twisting operation [E]) to obtain
an embedded (2, 0) twisted pre-Whitney disc E0 which fails to be a genuine Whitney disc
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because its framing is off by two and it intersects Rs twice. Correct the framing by replacing
a small disc with one of self intersection ±1 (see [FQ] p. 14) and then push the intersection
off the α boundary to obtain the embedded disc E1 which has the correct framing but
|E1 ∩Rs| = 4.

Let R′s be a geometrically dual sphere to Rs disjoint from (G ∪ (R \ Rs) ∪ F ∪ E1). Such
a sphere can be obtained from Gs by doing Whitney moves to Gs using the components of
F that intersect Gs and then isotoping slightly. Here we assume that E1 is constructed to
lie very close to f1. Next eliminate the four int(E1) ∩ Rs intersections by tubing E1 to four
parallel copies of R′s along arcs in Rs disjoint from F . Thus we obtain a Whitney disc f ′1 with
tw(f ′1, f1) = (2, 0) and f ′1 ∩ (F \ f1) = ∅. Let F1 = {f ′1, f2, · · · , fn}. Now (G̃, R̃, F̃ , F̃1) ⊂ Ṽk
interpolates to (G̃, R̃, F̃ , F̃ ) by replacing lifts of f ′1 with lifts of f1 near the +∞ end of Ṽk.
This uses the fact that a lift of f ′1 is disjoint from F̃ except for the single component that has
the same boundary. It follows that φ(G,R,F ,F1) is S-equivalent to φ(G,R,F ,F) which is
the class of the identity. �

Step 2 : If the Lemma holds for (p1, q1) = (p, q) and (pi, qi) = (0, 0) for i > 1, then the
Lemma holds for (p1, q1) = (p± 2, q) and (p, q ± 2) with (pi, qi) = (0, 0) for i > 1.

Proof of Step 2. Let F ′ be a set of Whitney discs for which the hypothesis of Step 2 holds.
Now apply Step 1 to F ′ to obtain F1. By Lemma 5.2 F1 satisfies the twisting conclusion of
Step 2 relative to F . Also by Lemma 3.15, φ(G,R,F ,F1) = φ(G,R,F ′,F1) ◦ φG,R,F ,F ′)
and so is S-equivalent to the identity. �

Step 3: The lemma holds when (p1, q1) = (1, 1), (pi, qi) = (0, 0) for i > 1 and f1∩Gr∩Rs 6= ∅
where r 6= s.

Proof of Step 3. The proof is a modification of the proof of Step 1. Construct a framed,
embedded pre-Whitney disc E0 with tw(E0, f1) = (1, 1) disjoint from G′r ∪ R′s by starting
with f1 and then doing boundary twisting operations by twisting once about f1 ∩ Gr and
once about f1∩Rs. If necessary, correct the framing by first replacing a small embedded disc
by one with self intersection ±1 and then making the resulting pre-Whitney disc embedded
by pushing the self intersection off the f1 ∩Rs component. Except for its intersections with
Gr and Rs the resulting disc E1 is a genuine Whitney disc.

Construct geometric dual spheres R′s (resp. G′r) from Gs (resp. Rr) disjoint from (G ∪
(R\Rs)∪F ∪E1) (resp. (G \Gr)∪R∪F ∪E1). Construct f ′1 by tubing off E1 ∩ (Rs ∪Gr)
using copies of R′s and G′r and tubes that avoid the discs of F . The argument of Step 1
shows that if F ′ = {f ′1, f2, · · · , fn}, then f(G,R,F ,F ′) is S-equivalent to the identity. �

Step 4 : The lemma holds when (p1, q1) = (1, 1), (pi, qi) = (0, 0) for i > 1 and f1∩G1∩R1 6= ∅.

Proof of Step 4. As in the previous steps it suffices to show that there exists a Whitney disc
f ′1 with ∂f ′1 = ∂f1 and tw(f ′1, f1) = (1, 1) such that for i > 1, f ′1 ∩ fi = ∅ and in Ṽk, if f̃ ′1 and

f̃1 are lifts of f ′1 and f1, then f̃ ′1 ∩ f̃1 6= ∅ if and only if ∂f̃ ′1 = ∂f̃1.
To simplify notation denote G1 and R1 by G and R. By Lemma 3.11 we can assume that
R is in finger hand form with respect to G. See Figure 1. Since the winding of the hand
of R containing f1 equals 0, it follows that if this hand has s ≥ 1 fingers, then there are s
alternative Whitney discs a1, · · · , as as in Figure 4 a), where the s = 2 case is shown. Note
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that by choosing the ai’s appropriately we can assume that the hand’s fingers and alternate
discs appear as in the figure, in particular f1 is the first in the indicated sequence of ai’s and
fj’s.

Now construct the geometrically dual sphere R′ for R. As before construct R′ by applying
Whitney moves to G using the applicable discs of F . After a slight isotopy R′ ∩ (G ∪F) = ∅
and |R′ ∩R| = |R′ ∩R| = 1. See Figure 4 b). Next construct the geometrically dual sphere
G′ for G by first doing Whitney moves to R along a1, · · · as as well as Whitney moves to
all the relevant discs in F \ {f1, · · · , fs}. Construct G′ to lie close to R and these discs,
in particular G′ ∩ R′ is very close to R ∩ R′. After a slight isotopy we can assume that
|G′ ∩ G| = |G′ ∩G| = 1 and G′ ∩ (R∪ F) = ∅. See Figure 4 c).

Next isotope G′ so that its intersection with a 3-ball containing f1 has a full right hand
twist about R near f1 which is compensated by a full left hand twist as in Figure 4 d). This



26 DAVID GABAI

R G'

a) b) c)

E

Figure 5. Constructing a (1,1)-twisted Whitney disc

twist gets undone when moving both in the past and in the future and creates an intersection
with f1.

We now construct f ′1. Let A be an annulus having (1, 1)-twisting near ∂f1 with one
component of ∂A equal to ∂f1. By construction, A∩G′ = ∅. Next add an untwisted band to
A to create B as in Figure 5 a). Again B ∩G′ = ∅. Let br and bg denote the components of
∂B that link around R and G. Construct an embedded correctly framed pre-Whitney disc
C by capping off these components with discs Cr and Cg. Cr consists of an annulus starting
at br that moves directly into the future which is then capped off by a disc in a horizontal
time slice. So if Figure 5 a) shows a t = 0 slice, then Figure 5 b) shows the t = ε slice and
the spanning disc. The disc Cg bounded by bg will have an excess intersection point with G.
Since 1 + 1 = 2, for C to have the correct framing the construction of Cg might require first
creating a self intersection and then pushing off to create two extra intersections with G.
Note that the unique intersection point of C∩G′ is next to the unique transverse intersection
point of C with R as indicated in Figure 5 b). Next using a tube that follows parallel arcs
in R and G′, tube off these two points using a copy of R′. See Figure 5 c). Let E denote
the resulting framed embedded pre-Whitney disc. Note that E ∩ G′ = ∅. Finally tube off
the one (or three) excess points of E ∩G with copies of G′ to construct the desired Whitney
disc f ′1. �
Step 5 : The lemma holds when (pi, qi) = (0, 0) for i 6= 1.

Proof of Step 5 First assume that p1 is even, and hence by parity so is q1. Then there exists
a sequence (0, 0) = (p1, q1), (2, 0) = (p2, q2), · · · , (pr, qr) = (p1, q1) so that for 1 ≤ m ≤ r −
1, (pm+1, qm+1)−(pm, qm) = (±2, 0) or (0,±2). Let F = F1,F2, · · · ,F r be complete systems
of Whitney discs for R and G such that for 1 ≤ m ≤ r,Fm = {fm, f2, · · · , fn} where f 1 =
f1, tw(f 2, f 1) = (2, 0), for 2 ≤ m ≤ r− 1, tw(fm+1, fm) = ((pm+1, qm+1)− (pm, qm)), and for
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all i, φ(G,R,F i,F i+1) is S-equivalent to the identity. The existence of F2 follows by Step 1
and the existence of F i, i > 2 follows from Step 2. By Lemma 5.2 tw(f r, f1) = (p1, q1) and by
factorization φ(G,R,F ,F r) = φ(G,R,F r−1,F r)◦φ(G,R,F r−2,F r−1)◦· · ·◦φ(G,R,F1,F2).
Since each of the factors is S-equivalent to the id, the result follows.

Next assume that p1 is odd. Then there exists a sequence (0, 0) = (p1, q1), (1, 1) =
(p2, q2), · · · , (pr, qr) = (p1, q1) so that for 2 ≤ m ≤ r − 1, (pm+1, qm+1) − (pm, qm) = (±2, 0)
or (0,±2). Argue as above, except use one of Steps 3 or 4 in place of Step 1. �

Step 6 : The lemma holds when (pi, qi) = 0 for i 6= s. �

Proof of Step 6 : This follows from Step 5 after reordering the elements of F . �

Step 7 : General Case

Proof of Step 7: Through repeated uses of Step 6, Lemma 5.2 and factorization, inductively
construct F0 = F ,F1, · · · ,Fn = F ′ so that φ(G,R,F ,Fi) is S-equivalent to id and if
Fi = (f i1, · · · , f in), then tw(f ij , fj) = (pj, qj) if j ≤ i and (0, 0) otherwise. �

6. Germs of finger and Whitney discs

The goal of this section is to prove the following:

Proposition 6.1. Let φ ∈ Diff0(S1 × S3), then φ is S-equivalent to ψ ∈ Diff0(S1 × S3)
arising from a boundary germ coinciding F |W system.

Lemma 6.2. Given (G,R,F ,W) there exists (G,R,F ,W ′) such that φ(G,R,F ,W ′) is S-
equivalent to id and W ∩ G =W ′ ∩ G.

Proof. View G and R in AHF form. See Figure 1 which shows the restriction of R ∪ G
to the i’th S2 × S2 factor, the finger discs which intersect Gi as well as spheres R′i and G′i
respectively geometrically dual to Ri and Gi. Letting R′ = ∪Ri∈RR

′
i, note that R′ ∩ G = ∅

and is geometrically dual to R. Let w ∈ W . If w ∩ Gi ∩ Rj 6= ∅ and βw := w ∩ Gi, then
since ∂w is homotopically trivial in Vk, ∂βw lies in a single hand Hw ⊂ Rj. Let γw be an
embedded loop of the form βw ∪αw where αw ⊂ Hw and has interior disjoint from the finger
arcs F ∩ R. The loops ∪w∈Wγw can be chosen to be pairwise disjoint. Each γw bounds an
immersed disc Dw contained in it’s S2 × S2 factor whose interior is disjoint from G ∪ R′.
These discs may have intersections and self intersections and possibly int(Dw) ∩R 6= ∅. At
the cost of creating additional intersections with R, these discs, which continue to be called
Dw’s, can be made embedded and pairwise disjoint. By boundary twisting near the αw’s,
thereby creating further intersections with R, these discs can be correctly framed. They
may fail to be Whitney discs only because the interior of the Dw’s intersect R transversely.
Finally eliminate these intersections by tubing with parallel copies of components R′ using
tubes that follow paths in R. LetW ′ denote the resulting collection of Whitney discs. Since
R′ ∩ (W ′ ∪F) = ∅, it follows from Lemma ?? that φ(G,R,F ,W ′) is S-equivalent to id. �

Lemma 6.3. Given (G,R,F ,W) such that F ∩ G =W ∩G there exists (G,R,F ,W ′′) such
that ∂W ′′ = ∂W and φ(G,R,F ,W ′′) is S-equivalent to the identity.

Proof. View G in AHF form with respect to F and let G ′ denote the geometrically dual
spheres to G as above disjoint from R. If w ∈ W , then since w ∩ G ⊂ F ∩ G, i.e. is a
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finger arc, ∂w bounds an immersed disc whose interior is disjoint from R ∩ G ′. As in the
previous lemma these discs can be modified to construct a family of Whitney discs W ′′ with
∂W ′′ = ∂W and W ′′ ∩ G ′ = ∅ and hence φ(G,R,F ,W ′′) is S-equivalent to the identity. �

Lemma 6.4. Given (G,R,F ,W) there exists (G,R,F1,W1) such that φ(G,R,F ,W) is S-
equivalent to φ(G,R,F1,W1) and ∂F1 = ∂W1.

Proof. Apply Lemma 6.2 to find (G,R,F ,W ′) such thatW ′∩G =W∩G and φ(G,R,F ,W ′)
is S-equivalent to the id. By Lemma 3.15, φ(G,R,F ,W) is isotopic to φ(G,R,W ′,W) ◦
φ(G,R,F ,W ′) and hence φ(G,R,F ,W) is S-equivalent to φ(G,R,W ′,W).

Now apply Lemma 6.3 to find (G,R,W ′,W ′′) such that φ(G,R,W ′,W ′′) is S-equivalent to
id and ∂W = ∂W ′′. Again by factorization φ(G,R,W ′,W) is S-equivalent to φ(G,R,W ′′,W)◦
φ(G,R,W ′,W ′′). It follows that φ(G,R,F ,W) is S-equivalent to φ(G,R,W ′′,W) where
∂W = ∂W ′′. �

Proof of Proposition 6.1. Let φ ∈ Diff0(S1 × S3). Suppose that it is represented by
(G,R,F ,W) which is supported on Vk. Staying within the S-equivalence class of φ, we
can additionally assume by Lemma 6.4 that ∂F = ∂W . By passing to a finite sheeted
cover of S1 × S3 and hence Vk, an operation preserving S-equivalence, we can assume
that every hand from an Ri to its Gi has winding 0. Indeed, any finite cover of degree
greater than the maximal winding over all hands from an Ri to its Gi suffices. Order
the elements (f1, · · · , fn) of F and (w1, · · · , wn) of W so that for each i, ∂fi = ∂wi. Let
(pi, qi) = tw(wi, fi). Now apply Lemma 5.4 to find F ′ so that φ(G,R,F ,F ′) is S-equivalent
to the identity and tw(F ′,F) = ((p1, q1), · · · , (pn, qn)). It follows that φ(G,R,F ,W) is S-
equivalent to φ(G,R,F ′,W) ◦ φ(G,R,F ,F ′) and hence to φ(G,R,F ′,W). By Lemma 5.2,
tw(F ′,W) = tw(F ′,F) + tw(F ,W) = tw(F ′,F)− tw(W ,F) = ((0, 0), · · · , (0, 0)). �

It follows from Theorem 4.6 and Proposition 6.1

Theorem 6.5. The Schoenflies conjecture is true if and only if every boundary germ coin-
ciding F |W system interpolates to the trivial F |W system.

7. Homotopic Whitney and Finger Discs

The following is the main result of this section.

Proposition 7.1. If φ ∈ Diff0(S1 × S3), then up to S-equivalence φ is represented by an
F |W system on some Vk such that if F = (f1, · · · , fm) and W = (w1, · · · , wm), then for
every i the boundary germ of wi coincides with that of fi and wi is homotopic to fi via a
homotopy fixing N(∂wi) pointwise and supported in Vk \ G ∪ R.

Remarks 7.2. Using Proposition 6.1 we will start with an F |W system F = (f1, · · · , fm)
and W = (w1, · · · , wm) satisfying the boundary germ conclusion. We will assume that R is
in AHF form with respect to F . Also for i 6= j, Ri ∩Gj is contained in a single hand, since
this can be achieved by passing to a finite cover, an S-equivalence preserving operation. In
addition, we will assume that for all i, Ri ∩ Gi+1 6= ∅. If necessary, achieve this by adding
extra hands with equal finger and Whitney discs. Here indices in Z are modulo k.

Notation 7.3. We continue to use notation as in 3.7. DefineX := N(G∪R), Y := Vk−intX,
U0 = ∪ki=1S

2 × S2
i and Z := Vk \ ∪ki=1 int(S2 × S2

i ). Let Ai,j denote the arm that goes from
Ri to Gj, provided one exists and define AZi,j := Z ∩ Ai,j.
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Lemma 7.4. By passing to another finite cover and isotoping the AZi,j’s we can assume

that π(AZi,j) ⊂ exactly one of (i, j) or (j, i), diamπ(AZi,j) < k/16 and for each wp ∈ W,
diamπ(wp ∩ Z) < k/16. �

Notation 7.5. Let Ii,j denote the short subinterval of S1 bounded by i, j. In what follows
this interval will usually have length ≤ k/4. Define a directed graph G whose vertices are
the Σi’s and whose edges E := {ei,j} are the Ai,j’s with i 6= j, where ei,j points from Σi to
Σj. Let C denote the cycle formed by e0,1, · · · , ek−1,k. For ei,j ∈ E, let Hi,j ⊂ Z denote a
1-handle with attaching discs in Σi and Σj such that π(Hi,j) ⊂ Ii,j. Assume that the Hi,j’s
are pairwise disjoint. Let U1 = U0 ∪i,j Hi,j.

Lemma 7.6. The AZi,j’s can be naturally isotoped into the Hi,j’s after which U1 deformation
retracts to X ∪N(F ∪A), where A = {a1, · · · , an} are the auxiliary discs.

Proof. Thicken the finger discs to 2-handles and expand them to first fill the fingers, then
the hands and then the arms. Finally add N(A). The result is isotopic to N(Gstd ∪ Rstd)
union 1-handles, one for every arm from Ri to Gj, i 6= j. Note that an arm from an Rstd

i to
Gstd
i together with its finger and auxiliary discs gets absorbed into N(Gstd ∪Rstd). After the

AZi,j’s have been naturally isotoped to lie in the Hi,j’s we see that U1 deformation retracts to
X ∪N(F ∪A). �

Lemma 7.7. There exists a system of discs D := ∪e∈E\CDe := {D1, · · · , Dr} called arm
rest discs such that

i) The elements of D are pairwise disjoint and properly embedded in Y
ii) D ∩ (F ∪A) = ∅
iii) If U = X ∪N(F ∪A ∪ D), then S1 × S3 \ int(U) is isotopic to a vertical S1 ×B3.

Proof. The arm rest discs will have the property that if Di corresponds to ep,q, then Di runs
over Hp,q exactly once and is disjoint from all the other Hp,q’s except those of the form Hi,i+1.
Assuming conclusions i) and ii), it follows that when thickened to 2-handles the Di’s cancel
the Hi,j’s of U1 with j 6= i+ 1 and hence the resulting U is isotopic to ∪ki=1S

2 × S2
i ∪Hi,i+1

and so its closed complement is isotopically a vertical S1 × B3. We detail the construction
of a special case, say D1 := De3,1 , from which the general construction may be deduced. Our
D1 is bounded by α ∗ β where α ⊂ ∂N(A3,1) with initial point in N(Rstd

3 ) and final point
in N(A3,1) ∩N(Gstd

1 ). Then β follows a path ⊂ ∂N(Gstd
1 ∪Rstd

1 ∪A1,2 ∪Gstd
2 ∪Rstd

2 ∪A2,3 ∪
Gstd

3 ∪Rstd
3 ). �

Definition 7.8. Let E := F ∪A∪D. Fix orientations on the elements of E and then induce
orientations on the elements of W from those of F using the boundary germ condition.

Lemma 7.9. If S closed oriented surface in Y , then [S] = 0 ∈ H2(Y ) if and only if for each
E ⊂ E , 〈S,E〉 = 0.

Proof. The forward direction follows from the fact that algebraic intersection number is a ho-
mological invariant. Conversely, if all the intersection numbers equal 0, then S is homologous
to a surface disjoint from U and hence is homologically trivial, since H2(S1 ×B3) = 0. �

Definition 7.10. For i ∈ {1, · · · , k}, let R′i ⊂ S2 × S2
i be a dual sphere to Ri as in Figure

1, i.e. is obtained by choosing a parallel copy of Gstd
i that intersects Ri exactly once and

R′i ∩ F = ∅. Construct oriented pairwise disjoint linking spheres to the elements of E , i.e.
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to E ∈ E we define an oriented embedded sphere TE with trivial normal bundle such that
TE ∩ (E ∪G∪R) = TE ∩E is a single point of positive sign. We do this first on the finger and
auxiliary discs. Let E be such a disc with say E∩Rj 6= ∅. Let T ′E be a 2-sphere consisting of
an annulus disjoint from Rj that intersects E once in its interior together with two discs that
each intersect Rj once of opposite sign. These T ′E’s can be chosen to be oriented, pairwise
disjoint and so that T ′E ∩ E = T ′E ∩ E = 1 positive point. To obtain TE tube off the two
intersections with parallel copies of R′j where the tubes follow arcs in Rj [No]. This can
be done maintaining pairwise disjointness and so that each TE is disjoint from all the R′j’s.
Given an arm rest disc D that intersects Hi,j, j 6= i+1, construct the oriented linking sphere
TD ⊂ Z using a sphere that links Hi,j.

Remark 7.11. Note that each TE can be constructed so that diam(π(TE ∩ Z)) < k/16.

Lemma 7.12. i) H2(Y ) is freely generated by {[Tf ]|f ∈ F} ∪ {[Ta]|a ∈ A} ∪ {[TD]|D ∈ D}.
ii) H2(Y, ∂E) is freely generated by {[E]|E ∈ E} and {[Tf ]|f ∈ F}∪{Ta|a ∈ A}∪{TD|D ∈
D}. �

Lemma 7.13. If wi ∈ W, then the coefficient of the [Tfi ] term of [wi] ∈ H2(Y, ∂E) equals
zero.

Proof. If this coefficient was non zero, then wi would have a framing inconsistent with that
of a Whitney disc with the same boundary germ as fi. �

Lemma 7.14. If np,q denotes the coefficient of the [Tfq ] term of [wp] ∈ H2(Y, ∂E), then
ni,j = −nj,i.
Proof. Since wi∩wj = ∅ it follows that 0 = 〈[wi], [wj]〉 = ni,j+nj,i. The latter equality follows
since [wi] = [fi] + ni,jTfj and [wj] = [fj] + nj,iTfi plus other terms that do not contribute to
interection number. �

Lemma 7.15. There exists a system F ′ = (f ′1, · · · , f ′m) of Whitney discs with the same
boundary germs as F such that for each p, [f ′p] = [wp] ∈ H2(Y, ∂E) and φ(G,R,F ,F ′) is
S-equivalent to id. Finally, for each p, diam(π(f ′p ∩ Z)) ≤ k/4.

Proof. Construct f 1
p by first tubing fp to np,q copies of Tfq , when q < p and then taking the

disjoint union with np,q parallel copies of Tfq when p < q. The f 1
p ’s can be constructed to be

embedded, disjoint from each R′j.

Construct f 2
1 , f

2
2 , · · · , f 2

m as follows. For q > p tube the disc component of f 1
p to its

Tfq components using tubes that follow arcs in f 1
q connecting oppositely oriented points of

f 1
p ∩ f 1

q . This can be done so that the f 2
p ’s are pairwise disjoint, embedded and disjoint from

each R′j.

Finally obtain f ′p by tubing f 2
p to 〈wp, ar〉 parallel copies of Tar and 〈wp, Ds〉 parallel copies

of TDs . This whole construction can be done so that the f ′p’s are pairwise disjoint, disjoint
from each R′j and each diam(π(f ′p ∩ Z)) ≤ k/4. By construction [f ′p] = [wp] all p. Since for
all j, (F ∪ F ′) ∩R′j = ∅ it follows that φ(G,R,F ,F ′) is S-equivalent to id. �

Proof of Proposition 7.1. By Proposition 6.1 φ is S-equivalent to φ(G,R,F ,W) where the
boundary germs of F and W coincide. After lifting to finite cover we can assume that
the conclusion of Lemma 7.4 holds. Now let F ′ be as in Lemma 7.15. By factorization φ is
S-equivalent to φ(G,R,F ′,W )◦φ(G,R,F ,F ′) and hence φ is S-equivalent to φ(G,R,F ′,W).
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Since the inclusion Y → Vk is a π1-isomorphism, it follows that Ỹ = Ṽk \N(G̃∪ R̃). Since
diam(π(f ′p ∪ wp)) ∩ Z ≤ k/4 it follows that f ′p is homologous to wp by a chain disjoint from

π−1(j + 1/2) for some j ∈ {1, 2, · · · k}. It follows if f̃ ′p, w̃p are lifts with common boundary

germs, then they are homologous in H2(Ỹ , ∂Ẽ) and hence are homotopic rel partial in Ỹ .
Therefore, for all p, f ′p is homotopic rel ∂ to wp in Y . �

8. Homotopy implies Concordance

In [MM] Maggie Miller shows that in a 4-manifold whose fundamental group contains no
2-torsion, homotopic 2-spheres are concordant provided one of them has a dual 2-sphere and
under suitable hypothesis this holds more generally. Here we use §4.1 [MM] to show that
homotopic F |W systems are S-equivalent to ones with W concordant to F .

Definition 8.1. The F |W system (G,R,F ,W) on Vk is ∂-germ coinciding if ∂W coincides
with ∂F near its boundary. We say that W is homotopic to F if they are ∂-germ coinciding
and if W can be homotoped to F rel ∂ by a homotopy supported in Vk \ (G ∪ R). We say
that W is standardly concordant to F if it is obtained by starting with F × [0, 1], attaching
cancelling 3-dimensional 1- and 2-handles to F × 1 and then reimbedding the 2-handles
to obtain an immersed F × [0, 1] whose F × 1 := W1 is embedded. This also describes a
standard concordance as a critical level embedding The reimbedded 2-handles are required
to coincide with the original ones near their attaching regions. Finally W is obtained from
W1 by isotoping slightly to regain the ∂-germ coinciding condition.

Each w ∈ W associated to f ∈ F is naturally decomposed into the union of a base, beams
and plates. The base is the closure of the planar surface consisting of f with the attaching
zones of the handles removed. The beams are the lateral surfaces of the 1-handles minus the
open attaching zones of the 2-handles and the plates are the lateral surfaces of the 2-handles,
where each plate consists of two parallel discs. The beams are standardly embedded. An
extended beam is the full lateral surface of a 1-handle. See Figure 6.

Proposition 8.2. Let (G,R,F ,W) by a F |W system on Vk with W homotopic to F .
Then there exists a F |W system (G,R,F ,W ′) with W ′ standardly concordant to F and
φ(G,R,F ,W) S-equivalent to φ(G,R,F ,W ′).

Proof. Let Nf (resp. Nw) be a system of dual spheres to F (resp. W), which exists by
Lemma 4.22. If |F| = n, then let ft : ∪ni=1D

2 → Vk be a regular homotopy [Sm] supported
away from N(G ∪F) such that f0 = F and f1 =W , where we abuse notation by identifying
a map with its image. We will assume that all the finger moves occur at t = 1/4 and all the
Whitney moves when t = 3/4. Since the support of the finger moves can be chosen to lie in a
small neighborhood of the union of F and arcs we can assume that f.251 is dual to Nf . This
means that f.251(Di) intersects Nf exactly once and at the component of Nf that intersects
f0(Di). Since f1 is obtained by first applying Whitney moves to f.749 and then isotopy, it
follows that f.749 is obtained from f1 by finger moves and isotopy. Thus we can assume that
f.749 is dual to Nw and that there is an ambient isotopy from f.251 to f.749 which starts out
dual to Nf and ends dual to Nw.

Each finger move fk creates two points of self intersection of f.251 which are then eliminated
by replacing two discs on one sheet of f.251 by a tube Tk as in Figure 6 [MM] that lies very
close to an arc δk ⊂ f.251. Let R1 denote the embedded surface obtained by modifying
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The plates are possibly 

complicatedly embedded

Figure 6. A standardly concordant Whitney disc

f.251 by these tubings. The ambient isotopy induces a diffeomorphism g1 : Vk → Vk with
g1(f.251) = f.749 and an isotopy of R1 to g1(R1) := R2, where we can assume that g1(Tk) is a
tube lying close to g1(αk), i.e. we can assume that g1 takes a small regular neighborhood of
αk containing Tk to a small regular neighborhood of g1(αk). The core circle of Tk bounds a
small 2-disc Ak that intersects f.251 in a point ak ∈ αk. Let g1(Ak) := Ek. Since f.251 (resp.
f.749) is dual to Nf (resp. Nw) we obtain an embedded disc Bk (resp. Fk) by tubing Ak
(resp. Ek) with a copy of a component of Nf (resp. Nw). The tube follows an embedded
arc in f.251 (resp. f.749) from ak (resp. g1(ak)) to a point near Nf (resp. Nw). Think of Fk
as a reimbedding of g1(Bk).

Thicken Fk to a 3-dimensional 2-handle ωk and let W ′ be the result of embedded surgery
of R2 along the ωk’s. By construction,W ′ ∂-coincides withW and is dual to Nw. By Lemma
4.24 φ(G,R,F ,W) is S-equivalent to φ(G,R,F ,W ′).

To complete the proof we show that up to isotopy W ′ is standardly concordant to F .
As in §4.2 [MM] up to isotopy R1 is obtained from f.249 by embedded surgery along 3-
dimensional 1-handles, one 1-handle for each finger move. See Figure 6 [MM]. Up to isotopy
the thickened Bk’s denoted τk’s are cancelling 2-handles. Now reimbed each τk using g−1

1 (ωk).
Since W ′ is isotopic to the surface obtained by embedded surgery to R1 along g−1

1 (ωk) the
result follows. �

9. Finger|Whitney-carving/surgery presentations of Schoenflies spheres

We start by defining the notion of a carving/surgery presentation of a Schoenflies sphere.
We then define a specialized form of this presentation called a F |W -carving/surgery pre-
sentation. The main result of the next section is that every Schoenflies sphere has a F |W -
carving/surgery presentation.

Definition 9.1. Let S0 ⊂ S4 denote the standard 3-sphere and let X0
S, X

0
N denote its 4-ball

closed complementary regions. A carving/surgery presentation of a Schoenflies sphere S in
the 4-sphere with closed complementary regions ∆S and ∆N consists of
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i) a framed link L = {k1, · · · , kn} ⊂ S0 that surgers S0 to S3 such that each component ki
bounds an embedded disc Dki such that Dki ∩S0 ⊂ N3(L) and induces the given framing on
ki. Here N3(L) denotes a regular neighborhood of L ⊂ S0. If a neighborhood of ∂Dki ⊂ X0

S

(resp. X0
N), then label ki with a dot (resp. 0).

ii) If int(Dki)∩N3(kj) 6= ∅, then the components of Dki ∩N3(kj) bound pairwise disjoint
discs in Dki that are parallel to Dkj and contained in a small neighborhood of Dkj . This
induces a partial order on the ki’s and the Dki ’s, with the minimal elements corresponding
to discs Dk such that Dk ∩ S0 = k. Call a k ∈ L or its corresponding disc Dk a depth-m
element if there is a maximal length sequence k = ki0 > ki1 > ki2 > · · · > kim−1 . Let M be
the maximal depth over all the components of L.

iii) Let X1
S ⊂ S4 denote the compact manifold obtained from X0

S by carvings [Ak] corre-
sponding to the minimal discs contained in X0

S and by adding 2-handles corresponding to
the minimal discs contained in X0

N . Let X1
N denote the closed complementary region of X1

S.
Let X2

S ⊂ S4 denote the compact manifold obtained from X1
S by carving the depth-2 discs

lying in X1
S and adding 2-handles corresponding to the depth-2 discs lying in X1

N . Let X2
N

denote the closed complementary region to X2
S. In a similar manner construct X3

S, · · · , XM
S

and X3
N , · · · , XM

N .
iv) Define ∆S = XM

S , ∆N = XM
N and S = ∂∆S = ∂∆N . By construction S = S3 and ∆S

and ∆N are its Schoenflies balls.

Definition 9.2. If k is depth m and labeled with a 0, then let D0
k denote the associated

2-handle attached to Xm−1
S , while if labeled with a dot, then let D•k denote the associated

2-handle attached to Xm−1
N . We will abuse notation by calling D0

k (resp. D•k) a 2-handle of
∆S (resp. ∆N) and a carving of ∆N (resp. ∆S). Viewed in ∆S, D0

k will be a 2-handle with a
D2×U deleted, where U is a possibly empty open subset of the cocore. E.g. if M −m = 1,
then D0

k may have finitely many parallel copies of its core carved out.

Notation 9.3. Partial orders will often be depicted as forests with oriented edges. Recall
from Notation 3.7 that Vk = S1 × S3#kS

2 × S2 with V∞ its universal cover where the lifts

of the S2 × S2 summands are denoted S̃2 × S2
i, i ∈ Z. In what follows S̃0 ⊂ V∞ will denote

a 3-sphere of the form pt×S3 that separates the S̃2 × S2
i’s where i > 0 from the S̃2 × S2

j’s

where j ≤ 0. To make the notation more symmetric about 0, reindex S̃2 × S2
i as S̃2 × S2

i−1

when i ≤ 0. Similarly reindex R̃i, G̃i, etc when i ≤ 0. A finger (resp. Whitney) disc from

R̃i to G̃std
j will be denoted f̃ij (resp. w̃ij), though there may be more than one such disc for

a given i and j.

Definition 9.4. We say that Di nests in Dj if some component of Di ∩N(kj) is outermost
in Di ∩ (∪p 6=iN(kp)). We also say that ki or Di’s 2-handle or carving nests in kj or Dj’s
carving or 2-handle. In this case we also say that Dj or its 2-handle or carving or kj lodges
Di or its carving or 2-handle and kj.

Definition 9.5. Given the pairwise disjoint knots k1, · · · , kr in S0, then k′1, · · · , k′r are called
linking circles if they bound pairwise disjoint discs in S0 that δij intersect the ki’s.

Definition 9.6. A F |W -carving/surgery presentation is a carving/surgery presentation
whose link L is a disjoint union of knots Lk and their linking circles such that all the
linking circles are 0-framed. Furthermore Lk = BL t SL tNL with the partial order and 0,
dot labeling arising as follows.
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1a) BL is the unlink U = {bi1 , · · · , bip} together with its linking circles. Here ij ∈ Z6=0

and ij 6= ık unless j = k. If i < 0 (resp. > 0), then bi is labeled with a 0 (resp. dot) and
it’s linking circle b′i is labeled with a dot (resp. 0). Within BL, there is a directed edge from
each dotted linking circle to each knot with label 0 and a directed edge from each linking
circle with label 0 to each dotted knot.

Motivation (where this comes from): A bi, i < 0 (resp. i > 0) will arise if there is a finger

disc of the form f̃ji with j > 0 (resp. j < 0).

1b) SL = tSij where i < 0 and j ∈ Z6=0. Associated to each Sij is a finite union Wij

of 2-discs each of which contains finitely many pairwise disjoint simple closed curves whose
union is denoted Skij. The elements of Skij are in 1-1 correspondence with knots in S0 and
each knot comes with a linking circle. Sij is the union of these knots and their linking circles.

Motivation (where this comes from): The discs associated to Sij are the w̃ij discs with

i < 0 and the simple closed curves are intersections of the w̃ij’s with S̃0.

1b) continued: The partial ordering restricted to the knots is induced by the inclusion
relation of the simple closed curves within the discs, with the innermost curves being the
minimal ones. The linking circles are given the opposite partial ordering. If two knots are
connected by an edge, then one is labeled with a 0 and the other with a dot, subject to the
condition that the maximal knots are labeled with 0’s. If a knot is labeled with a 0 (resp.
dot), then its linking circle is labeled with a dot (resp. 0). See Figure 7. The boxes on the
knots remind us that they may be knotted and linked with other knots of L.

1c) NL = tNij where i > 0 and j ∈ Z6=0. Associated to each Nij is a finite union Wij of
discs each of which contains pairwise disjoint simple closed curves whose union is denoted
Nk
ij. The elements of Nk

ij are in 1-1 correspondence with a set of knots in S0 and each knot
comes with a linking circle. Nij is the union of the knots and their linking circles.

Motivation (where this comes from): The discs associated to Nij are the w̃ij discs with

i > 0 and the simple closed curves are intersections of the w̃ij’s with S̃0.

1c) continued: The partial ordering restricted to the knots is induced by the inclusion
relation of the simple closed curves within the discs, with the innermost curves being the
minimal ones. The linking circles are given the opposite partial ordering. If two knots are
connected by an edge, then one is labeled with a 0 and the other with a dot, subject to the
condition that the maximal knots are labeled with dots’s. If a knot is labeled with a 0 (resp.
dot), then its linking circle is labeled with a dot (resp. 0). See Figure 7.

1d) Let α be the knot of Sij or Nij associated to the element β ⊂ Nk
ij or Skij. We say that

both α and β are at level n if there exists an arc from β to ∂Wij which intersects Nk
ij n times

where n is the minimal possible.

2a) Order relations involving BL and NL∪SL: For every i, j, k ∈ Z6=0 with j < 0 and k > 0
construct directed edges according to Figure 8 a). I.e. for each maximal knot of Nkj there is
a directed edge from its linking circle to the linking circle b′j of bj. For every maximal knot
of Sji there is a directed edge from b′j to the knot.
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Figure 7. Constructing the Sij and Nij Families from Intersection Data

In addition, for every knot of NL ∪ SL labeled with a dot, maximal or not, construct a
directed edge to each bj where j < 0.

For every i, j, k ∈ Z6=0 with j > 0 and i < 0 construct directed edges according to Figure
8 b). I.e. For each maximal knot of Sij there is a directed edge from its linking circle to b′j.
For each maximal knot of Njk there is a directed edge from b′j to the knot.

In addition, for every knot of NL ∪ SL labeled with a 0, maximal or not, construct a
directed edge to each bj where j > 0.

2b) Additional order relations involving SL: For every maximal knot k of Sji and every
maximal knot k1 of Sik construct a directed edge from the linking circle k′ of k to the knot
k1. In particular for every maximal knot k of Sii with linking circle k′ there is a directed
edge from k′ to k and if k1 is another maximal knot of Sii with linking circle k′1, there is a
directed edge from k′1 to k and a directed edge from k′ to k1.

2c) Additional order relations involving NL: For every maximal knot k of Nji and every
maximal knot k1 of Nik construct a directed edge from the linking circle k′ of k to the knot
k1. In particular for every maximal knot k of Nii there is a directed edge from k′ to k and
if k1 is another maximal knot of Nii with linking circle k′1, there is a directed edge from k′1
to k and a directed edge from k′ to k1.
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Figure 8. Order relations involving BL. Non maximal knots not shown.

This completes the description of the additional combinatorial structure needed for a
carving/surgery presentation to be a F |W -carving/surgery presentation, subject to checking
that the order relation is a partial order.

Lemma 9.7. The order relation on the link L of a F |W -carving/surgery presentation is a
partial order.

Proof. The knots of BL are minimal elements. After deleting these elements, all remaining
directed edges from the knots of SL (resp. NL) go to knots of SL (resp. NL) and the ordering
of these knots is induced from the partial ordering on embedded simple closed curves on discs.
Thus it suffices to prove the lemma for the ordering restricted to the linking circles of L.
With respect to that ordering the linking circles of BL are minimal elements and again the
ordering of what remains is induced from the partial ordering on embedded simple closed
curves on discs. �

Definition 9.8. We continue to call a carving/surgery presentation a F |W -carving/surgery
presentation (FWCS) if it satisfies the conditions of Definition 9.6 except that the directed
edges are a proper subset of those stated in that definition.
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Remark 9.9. In the proof of Theorem 10.1 proper subsets may occur for the directed edges
from g′j’s to g`’s and those of the second and fourth paragraphs of 2a).

Definition 9.10. An optimized FWCS-presentation is a FWCS-presentation with the fol-
lowing additional features.

i) The knots of Sij and Nij are of level at most 2.
ii) If k ∈ Lk, then Dk induces the 0-framing on k.
iii) The knots SL ∪ NL are the disjoint union of A and B where A ∪ BL and B ∪ BL are

unlinks in S0.
iv) B includes all the level-2 knots and if k ∈ B, then k is a minimal element with respect

to the partial order on L.

10. Schoenflies spheres have Finger|Whitney-carving/surgery presentations

The following is the main result of this section.

Theorem 10.1. Every smooth 3-sphere in the 4-sphere has a FWCS-presentation.

Proof. By Proposition 1.10 every 3-sphere Σ′ ⊂ S4 corresponds to the S-equivalence class of
some φ ∈ Diff0(S1 × S3). Viewing S4 as (R× S3)∪ {S,N}, then Σ′ is isotopic to φ̃(pt×S3)

where φ̃ is the lift to S̃1 × S3. By Lashoff - Shaneson [LS] and Sato [Sa] there is a pseudo-
isotopy f from id to φ which by [HW] arises from a 1-parameter Hatcher-Wagoner family
(qt, vt). We will assume that (qt, vt) induces a F |W system satisfying the conclusion of
Proposition 8.2 and that (qt, vt) has been normalized as in the second and third paragraphs
of the poof of Theorem 2.5. In what follows V will denote S1 × S3 and Vk will denote
S1 × S3#kS

2 × S2 where k is the number of components of the nested eye. It suffices to
prove the theorem for the 3-sphere Σ obtained from Σ′ by reversing orientation, which by
Proposition 1.10 is the class of φ̃−1(pt×S3).

Step 1: Show how to construct φ−1(U) from the F |W -system where U is a closed subman-
ifold of V .

We view the 1-parameter family (qt, vt) as a smoothly varying family of handle structures
ht on V × I where h1/4 corresponds to k standardly cancelling 2 and 3-handles and for
t ∈ [1/4, 3/4] the handle structure changes according to the path of 2-sphere boundaries of
the cores of the attaching 3-handles.

We introduce some terminology to keep track of the data, in particular both before and
after the 2-handle attachments. First ht denotes the handle structure on V × I × t. For
t ∈ [1/4, 3/4] the 2-handles are attached to V × [0, 1/4] × t along a set of k 0-framed
simple closed curves Ω × 1/4 × t, where Ω = {ω1, · · · , ωk} and the ωi’s bound pairwise
disjoint discs D = {D1, · · · , Dk}. We abuse notation by also viewing Ω and the Di’s as
subsets of V × 0× t. Let Vk × t denote the result of attaching these 2-handles. This Vk × t
corresponds to the Vk × 1/4 × t in the proof of Theorem 2.5. With terminology as in §2,
Gstd = {Gstd

1 , · · · , Gstd
k } ⊂ Vk × t denotes the boundaries of the 2-handle cocores, where Gstd

i

is the standard green sphere in the i’th S2 × S2 factor. It is of the form S2 × pt. When
t = 1/4, the 3-handles are attached along the set of spheres Rstd = {Rstd

1 , · · · , Rstd
k } where

Rstd
i is the i’th standard red sphere of the form pt×S2 in the i’th S2 × S2 factor and Rstd

i
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Figure 9. Sections and Fibers

flows to Di ⊂ V × 0 × 1/4 under −v1/4. Fix regular neighborhoods N(Ω) and N(Gstd) so
that Vk × t \ int(N(Gstd)) is diffeomorphic to V × 0× t \ int(N(Ω)) with the diffeomorphism
λ induced by −vt. Note that both are diffeomorphic to S1 × S3#kS

2 × D2. Thanks to
our initial normalization, much of the data corresponding to the projections to Vk and V
are independent of t ∈ [1/4, 3/4], e.g. Ω,Gstd,Rstd, the Di’s and λ. To help keep track of
λ|N(Gstd) we recall the

Section-Fiber Rule: For the 2-handle D2 ×D3 with ∂ core = ωi = ∂D2 × 0 and ∂ cocore =
Gstd
i = 0× ∂D3, with ωi viewed in V × 0× t and Gstd

i viewed in Vk × t, then ∂D2× ∂D3 can
be simultaneously viewed as ∂N(Gstd

i ) = N1(Gstd
i ) and as ∂N(ωi) = N1(ωi) with λ equating

the two. Here N1 denotes the unit normal bundle of the space in question. Under λ a
section pt×Gstd

i of N1(Gstd
i ) is identified to a normal fiber pt×S2 of N1(ωi) and a normal

fiber S1 × pt of N1(Gstd
i ) is identified with a section ωi × pt of N1(ωi).

Figure 9 a) shows a 3-dimensional slice of N1(Gstd
j ) ∪ Rstd

j . The two points in a) are
the intersection with a circle fiber and the dark 2-sphere on top and the light one below
are 2-sphere sections of N1(Gstd

j ). Construct N(ωj) by taking a product of a 3-dimensional

regular neighborhood of ωj with [−1, 1]. Here the sections and fibers of N1(ωj) are evident.
Alternatively we can construct N(ωj) using cylindrical coordinates (x, y, r, θ) and Figure 9
b) shows the θ = 0, π slices with two 2-sphere fibers and the intersection with a section.

Let Rt := {R1,t, · · · , Rk,t} ⊂ Vk × t denote the boundary of the cores of the 3-handles,
whereR1/4 = Rstd. When projected to Vk,Rt first undergoes finger moves with Gstd and then
Whitney moves according to its F |W system. Let t0 ∈ [1/4, 3/4) be just after the Whitney
moves are completed. Let R0

t = {R1,t, · · · , Rk,t} denote λ(Rt \ intN(Gstd)). We can assume
that Rt∩N(Gstd) is a union of fibers of N(Gstd) except during the finger and Whitney moves.
Figure 10.2 shows Rt±ε and R0

t±ε just before and after a finger move. We can assume that
for t ∈ [1/4, t0],R0

t coincides with R0
1/4 near ∂R0

1/4, where R0
1/4 = D \ intN(Ω). Having

completed the Whitney moves, R0
t0

is a union of discs. In what follows we abuse notation
by viewing Rt ⊂ Vk and R0

t ⊂ V .
Under isotopy extension the path Rt extends to an ambient isotopy ηt : Vk → Vk, t ∈

[1/4, t0]. Let U := U0
1/4 ⊂ V , be a closed cod-≥ 1 submanifold disjoint from N(D) and define

U1/4 = λ−1(U0
1/4). Note that U1/4 is disjoint from N(Gstd ∪ Rstd). Define Ut = ηt(U1/4). We



3-SPHERES IN THE 4-SPHERE AND PSEUDO-ISOTOPIES OF S1 × S3 39

Rt0
0

0

0
Ut

0

0
Ut

U1
0

a)

b)

Figure 10. A Glissade

can assume that Ut0 ∩N(Gstd) is a union of normal discs. By construction it is disjoint from
ηt(N(Rstd)). Let U0

t := λ(Ut \ int(Gstd)).
We now cancel the 2 and 3-handles of ht0 or equivalently introduce deaths to extend the

1-parameter family (qt, vt), t ∈ [0, t0] to a Hatcher - Wagoner family (q′t, v
′
t), t ∈ [0, 1], where

(q′t, v
′
t) = (qt, vt) for t ∈ [0, t0] and (q′t, v

′
t) has no excess 3/2 intersections in [t0, 1] and (q1, v1)

is nonsingular. The induced pseudo-isotopy is from id to a φ′ : V → V which by Lemma
2.6 is isotopic to φ. By Lemma 2.15 the isotopy class of φ′ is independent of the isotopy
extension ηt.

Under cancellation of the 2 and 3-handles of ht0 as in [Mi], U0
t0

is modified as follows to
obtain U0

1 = φ−1(U), up to isotopy. If C is a normal fiber of Ut0 ∩N1(Gstd), then λ(C) is a
section of N1(Ω) that is capped off by the union of an annulus in N(Ω) and a parallel copy
of a component of R0

t0
. Note that if K is any compact subset of fibers of N1(Gstd) disjoint

from Rstd, e.g. λ−1(∂U0
t0

) then λ(K) can be capped off by a corresponding compact set of
annuli and subsets of components of R0

t0
. See Figure 10. This completes the construction of

Step 1.

Definition 10.2. We call the operation of replacing U0
t0

by U0
1 a glissade.

Notation 10.3. As in Notation 9.3 we modify Notation 3.7 by reindexing S̃2 × S2
i, R̃std

i, G̃std
i,

etc. so that each i ≤ 0 is replaced by i−1. Therefore π̃−1[1−2ε,−1+2ε] = [1−2ε,−1+2ε]×S3

with ρ modified accordingly. In particular, when compared with the original ρ, our new ρ, ρ−1

when restricted to [1− 2ε,−1 + 2ε]× S3 are contractions in the first factor.

Let h̃t denote the lift of the handle structure ht to Ṽ × I × t. In a similar manner we
reindex its data. Let S0 := 0 × S3 ⊂ Ṽ and S′0 := 0 × S3 ⊂ Ṽk. With S4 identified with
Ṽ ∪ {S,N},S0 is our standard 3-sphere in S4.

Step 2: Apply the construction of Step 1 to S0 to construct a sphere S1 isotopic to φ−1(S0).
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Ri,3/8

~ ~
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Figure 11. Preparing for and doing the Finger move, as seen in Ṽk

Let S′1/4 = S′0 ⊂ Ṽk and S1/4 = S0 ⊂ Ṽ . In what follows we will assume that the finger

(resp. Whitney) moves occur during t ∈ (3/8− ε, 3/8) (resp. t ∈ (5/8− ε, 5/8)) and t0 = 5/8
and that the finger moves associated to a given arm are done together to have image that
arm, hand and fingers. We will also assume that the handle cancellations occur during
t ∈ (11/16− ε, 11/16) and so S11/16 = S1. We now construct an explicit isotopy S′t ⊂ Ṽk with

R̃t ∩ S′t = ∅ for t ∈ [1/4, t0] and use it to construct S1.

i) Prepare for the finger moves : For each arm-hand of F̃ from R̃std
i to G̃std

j with i < 0 and

j > 0 isotope S′1/4 to S′5/16 by doing a finger move from S′1/4 to G̃std
j so that S′5/16 is disjoint

from the track of that arm-hand. This isotopy creates a torus component of S′5/16∩∂N(G̃std
j).

The corresponding passage from S1/4 to λ(S′5/16 \ intN(G̃std)) := S5/16 involves the removal

of an open solid torus. In a similar manner isotope S′1/4 to S′5/16 when i > 0 and j < 0. The

supports of all these isotopies need to be disjoint. Figures 11 a), b) show the before and
after local pictures in Ṽk, i.e. at times t = 5/16 − ε and t = 5/16 where 5/16 − ε is a time

just before S′t locally intersects G̃std.

ii) Do the finger moves : For t ∈ [3/8 − ε, 3/8) isotope R̃t according to its arms, hands and
fingers. See Figure 11 c). Here S′3/8 and S3/8 are not shown.
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Figure 12. Preparing for and doing the Whitney move, as seen in Ṽk

iii) Prepare for the Whitney moves : If w̃ij ⊂ Ṽk is a Whitney disc between R̃i,1/2 and G̃std
j,

then w̃ij ∩ S′1/2 is eliminated by an isotopy S′t, t ∈ [(9/16 − ε, 9/16) as in Figures 12 a), b).

Note that each component of w̃ij∩S′1/2 gives rise to two torus components of N1(G̃std
j)∩S′9/16.

Also that both S′t and R̃i,t extend into the past and the future.

iv) Do the Whitney moves : For t ∈ (5/8− ε, 5/8) isotope R̃t according to its Whitney discs
to obtain R̃5/8. See Figure 12 c). The shaded region indicates the local projection of R̃i,5/8

to the present.

v) Do the glissade: We can assume that S′5/8 ∩ N(G̃std) is a union of normal discs. If

C ⊂ N1(G̃std
j) is the boundary of one such normal disc, then under the glissade λ(C) is

capped off by a disc which is the union of an annulus ⊂ N(w̃j) and a copy of R̃0
j,5/8. This

completes the construction of Step 2.

Since each R̃5/8 is isotopic to R̃1/4, Theorem 10.1 [Ga1] applies to any finite subset.

Applying λ̃ to this isotopy we obtain the following result.

Lemma 10.4. For any finite set J ⊂ Z, there exists an ambient isotopy κt of Ṽ fixing∪j∈J
N(ω̃j) pointwise such κ0 = id and κ1(∪j∈JR̃0

5/8) = ∪j∈JR̃0
1/4. �

Remark 10.5. Actually the construction of Step 2 can be done at the V and Vk level so
that there is a Z-equivariant ambient isotopy of R̃0

5/8 to R̃0
1/4 that fixes N(Ω̃) pointwise.

Step 3: Learn to work with anellini discs.

Definition 10.6. An anellini disc is a D2 × S1 viewed as a N1(D2).

An anellini disc is the 3-dimensional analogue of an annulus viewed as a thin tube. As it
is often beneficial to work with surfaces having subsurfaces a union of tubes, anellini discs
are useful for working with 3-dimensional submanifolds of 4-manifolds.

Our next definition formalizes the well-known operation of Figure 13 in terms of carvings,
surgeries and anellini discs.

Definition 10.7. Figure 13 a) schematically shows a disc D intersecting S3 ⊂ S4 in the
knot k, which bounds the subdisc D1 ⊂ XN

0 , the northern 4-ball. S3 is isotopic to S3
1 , the
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X
N

0

Figure 13. Anellini compression

result of embedded surgery along a 2-handle with core D1 and carving the standard disc D`

bounded by the linking circle `. See Figure 13 b). We call this operation anellini compression
with D` the anellini disc. Note that S3

1 ∩D ⊂ D` and |D` ∩D| = 1 where D` is viewed as a
disc. If instead we had D1 ⊂ XS

0 , then S3 is isotopic to a presentation with D1 carved and
with embedded surgery along D` with again D` the anellini disc. In both cases, carving and
embedded surgery are from the point of view of XS

0 .
Figure 13 c) shows the case when D∩S3 = k1∪k2. Here S3 is isotopic to the presentation

of that figure, where `1, `2 are the linking circles. Note that a dot (resp. circle) corresponds
to a carving along a disc whose boundary germ points into XS

0 (resp. XN
0 ). While the

induced framings on linking circles are always 0-framed, the induced framings on the knots
are not necessarily 0-framed even though they might be labelled with a 0. In our case S3 is
first carved along the disc D1 and then embeddedly surgered along the disc D2. It is also
carved along the standard disc D`2 followed by an embedded surgery along the disc D`1 .
Here D`1 consists of a tube that starts at k1 and follows an arc in D2 that is capped off with
a copy of D`2 . We say that k2 nests in k1 and `1 nests in `2, i.e. it enters the hollow created
by the carving or embedded surgery. Nesting is combinatorially recoded as in Figure 13 d).
If ∂D ∪D1 ⊂ XN

0 , then we have the similar situation with circles replaced by dots and vice
versa.

In general a disc D may intersect S3 in a finite set k1, · · · , kn of simple closed curves. Here
S3 is isotopic to S3

1 which is represented by a set of carvings and embedded surgeries along
the ki’s and their linking circles and S3

1 intersects D only along its anellini discs. Figure
14 b) shows a nesting diagram that schematically indicates the carvings and surgeries for
the disc D of Figure 14 a) with ∂D ⊂ int(XS

0 ). The boxes indicate that the knots can be
knotted and linked with each other.
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Figure 14. The Nesting Partial Order

Figure 15. Anellini Compression: The D view

Remark 10.8. Figure 15 shows the anellini compression from the point of view of the disc
D. Figure 15 a) shows Dk and D` and Figure 15 shows the result of the compression. The
D` is contained in the y = 0 plane and the shading indicates the projection to the y = 0,
θ = 0 plane. Using cylindrical (x, y, r, θ) local coordinates we can assume that D,Dk, D`,
and S3 are all locally invariant under θ rotation and hence so is the anellini compression
viewed locally.

To complete Step 3, we now show how to glissade from the point of view of anellini discs.

Lemma 10.9. If S′5/8 ∩N(G̃std) is contained in anellini discs A′5/8 and the intersection with

these discs is a union of fibers of N(G̃std), then viewed in Ṽ via λ̃ these anellini discs A5/8

have open subdiscs removed, one for each component of A′5/8 ∩N(G̃std) and their boundaries

are a union of sections of N1(Ω̃). The glissade creates the anellini discs A1 obtained by
capping off the boundary circles of A5/8 with annuli in N(Ω̃) together with copies of R̃0

5/8.

Equivalently, first obtain A′1 from A′5/8 by tubing off each intersection with G̃std with a parallel

copy of a component of R̃5/8 and then let A1 = λ(A′1). �

Step 4: Change our perspective of N(D̃) to pies with fillings and crust.
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Figure 16. A Pie

Figure 17. Finger Move: Pie View

Definition 10.10. Up to smoothing corners we will view the component of N(Ω̃ ∪ R̃0
1/4)

associated to w̃j as the thin pie D2
j × D2

ε := Pj where the filling N(R̃0
j,1/4) corresponds to

D2
j × 1

2
D2
ε and the crust N(ω̃j) corresponds to D2

j × (D2
ε \ int(1

2
D2
ε )). From this point of view

we equate fibers of N1(G̃std
j) \ int(N(R̃std

j)) called crust fibers with circles x× ∂D2
ε , x ∈ D2

j

and parallel copies of R̃0
j,1/4 with the discs x× 1

2
D2
ε , x ∈ ∂D2

j . Discs of the form D2× (z0, t0)

where (z0, t0) ⊂ 1
2
Dε are called sections of the filling. Discs of the form (x0, y0) × D2

ε are
called pie cocores. See Figure 16 a) which shows D2 × [−ε, ε], where [−ε, ε] is a diameter of
D2ε and Figure 16 b) which shows a pie cocore.

Remark 10.11. Finger moves from the pie view : See Figure 17. Note that a finger move in
Ṽ can be now viewed as a regular homotopy. While the points inside the pie are not really
there and indeed not shown in the figure, this point of view when completed will define an
explicit regular homotopy from S0 to S1. Note that solid lines denote the part of R0

t in the
present, while the shading denotes the parts in the past or the future.

Remark 10.12. The glissade from the pie view : Since R̃0
j,5/8 coincides with R̃0

j,1/4 near

∂R̃0
j,1/4 we can assume that N(R̃0

j,5/8) := D2
j×R̃0

j,5/8 and fiberwise coincides with N(R̃0
j,1/4) :=

D2
j × 1

2
D2
ε near D2

j × ∂ 1
2
D2
ε . If A5/8 are anellini discs that intersect D2

j ×D2
ε in Kj × ∂D2

ε ,
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Figure 18. The Glissade: Pie View

then the glissade gives

A1 = A5/8 ∪j (Kj × (D2
ε \ int

1

2
D2
ε )) ∪j (Kj × R̃0

j,5/8).

See Figure 18. Here A5/8 intersects Pj in a single crust fiber. The solid lines denote that

part of R̃0
j,5/8 in the present, while the shading denotes parts in the past or the future. Also,

R̃0
j,5/8 and more generally R̃0

5/8, may intersect Pj in sections of the filling. These are not
shown in the figure. This completes Step 4.

Step 5: Construct S1 from the pie perspective using anellini compressions.

In this section we go through the construction of Step 2 using the technology developed
in Steps 3 and 4. We also record as data memos the nesting and intersection data needed
for our F |W -carving/surgery presentation. In particular, we need to keep track of iterated
nesting, i.e. whether a nests d directly or through intermediate nestings or both.

i) Prepare for the finger moves : For each j > 0 (resp. j < 0) for which there is an arm

from R̃std
i to G̃std

j with i < 0 (resp. i > 0), do a finger move from Pj into S1/4 = S0. See
Figures 19 a), b). This is done away from where R0

1/4 is located. In Figure b) R0
1/4 has been

isotoped to pop slightly outside of Pj. The dark lines indicated the present and the shading
the projection to the present.

Data Memo 10.13. a) Viewed in S0, Pj ∩ S1/4 is an unknotted solid torus N3(gj). The
knots gj arising from this preparatory move are unknotted and unlinked in S0.

b) Call a pie plunged if it intersects S0. Let Pn1 , · · · , Pnp denote the plunged pies with
ni > 0 and Ps1 , · · · , Psq those with sj < 0 and let gn1 , · · · , gnp , gs1 , · · · , gsq denote the corre-
sponding knots.

c) If j < 0 (resp. j > 0), then Pj ∩XN
0 = σj (resp. Pj ∩XS

0 ) is the product of a standard
2-disc Dgj with pie cocores, where ∂Dgj = gj. In particular, those 2-discs respectively in XN

0

and XS
0 are unknotted and unlinked.
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Figure 19. Finger move in Ṽ : Pie view

ii) Do the finger moves : Figure 19 c) showsR0
3/8 after finger moves of R0

i,1/4 into Pi−1, Pi, Pi+1,
i ∈ Z, where indices need to be adjusted as in Notation 10.3 when one of them equals 0.
The figure only shows the intersection of R0

3/8 with the present.

iii) Prepare for the Whitney moves : This requires first doing anellini compressions and then
moving the anellini discs off of their Whitney discs.

Let w̃ij denote a Whitney disc from R̃i,1/2 to G̃std
j and wij = λ(w̃ij) ⊂ Ṽ . The number

of such discs is the number of fingers in the corresponding hand and ∪wij will denote the
union of such discs. For each wij do anellini compressions to modify S1/2 to S17/32. Figure 7
shows the case of a hand having two fingers.
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Figure 20. A Section of a Pie Filling arising from an intersection with R̃std
`

Data Memo 10.14. a) Each wij gives rise to a nesting diagram as in Figure 7 where a)
(resp. b)) shows the case where i < 0 (resp. i > 0). The diagram should be viewed as lying
in S0.

b) S17/32 ∩wij is contained in the anellini discs which span the linking circles of the knots
of the diagram. These discs induce 0-framings on the linking circles.

c) If γ is a component of S1/2 ∩ wij, then let Dγ ⊂ wij denote the disc bounded by γ and

D̃γ = λ−1(Dγ). Such a γ corresponds to a knot Kγ ⊂ S0 in the nesting diagram and comes

with a linking circle Lγ. Let Dij := ∪γDγ ⊂ (∪wij) and D̃ij = λ−1(Dij). Give the γ’s the
induced partial order coming from the nesting diagram knots, i.e. ordered by inclusion. Let
Dγ
ij = Dγ \ ∪β<γ int(Dβ) and D̃γ

ij = λ−1(Dγ
ij).

d) Each point of D̃γ
ij ∩ R̃std

` gives rise to a section ⊂ Dγ
ij ∩P` of P`’s filling. See Figure 20.

e) Each point of (∪w̃ij \D̃ij)∩ R̃std
` gives rise to a section ⊂ (∪wij \Dij)∩P` of P`’s filling.

f) ∪wij nests once in each Kγ for outermost γ ⊂ ∪wij.
g) We call the knots arising from these anellini compressions southern knots (resp. north-

ern knots) if i < 0 (resp. i > 0). A given southern (resp. northern) knot is generically
denoted Sij (resp. Nij) if it arises from a wij Whitney disc. When we say a knot (resp. link-
ing circle) is northern maximal or minimal we mean that it is maximal or minimal among
the northern knots (resp. linking circles). Similarly we may refer to southern minimal etc.
knots or linking circles.

Next isotope the northern and southern minimal anellini discs off of the Whitney discs to
obtain S5/8 at the cost of creating two oppositely signed intersections with Pj for each such
anellini disc.

Data Memo 10.15. a) Here we are viewing Pj as a 2-disc. In reality, each northern or
southern minimal anellini disc intersects exactly one Pj in two pie cocores. Note that to
follow Step 2 we need to remove the interior of these cocores. The advantage of keeping
them is that we can continue to work with the anellini discs as discs. In particular, to keep
track of the discs spanning the linking circles. Also, we continue to extend the modification
of S0 to S1 as a regular homotopy.
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b) Since an isotopy of an anellini disc extends to an isotopy of those discs nested inside,
the above isotopy extends to all the anellini discs intersecting wij and hence moves all of
them off of wij.

c) If i < 0 (resp. i > 0) and j > 0 (resp. j < 0), then all these intersections ⊂ σj otherwise
they are disjoint from all the σj’s.

iv) Do the Whitney moves :

Data Memo 10.16. a) R0
i,5/8 nests twice with opposite sign through the northern and

southern maximal knots of the form Sij or Nij, some j.

b) Each point of (∪w̃ij \ D̃ij) ∩ R̃std
` induces two filling sections of P` ∩R0

i,5/8.

v) Do the glissade: First prepare for the glissade by doing anellini compressions to the gj’s
along the discs Dj in the plunged pies. Let S21/32 denote the isotoped S5/8. Second, do
the glissade as in Remark 10.12 to obtain S1. See Figures 21 a), b). It depicts the anellini
compression along Dj from the Pj point of view, i.e. here Pj looks flat rather than plunged.
In this figure only the intersections with the present are shown. Figure 21 a) depicts two
anellini discs while b) includes Dg′j

, a third.

Data Memo 10.17. a) After the compressions a Pj only intersects S21/32 in anellini discs.
This preparatory operation requires isotoping those anellini discs that intersect Dj.

b) R0
i,5/8 will nest g` only if (∪w̃ij \ (∪jD̃ij))∩ R̃std

` 6= ∅ and the knot Kγ, γ ⊂ wij will nest

g` only if D̃γ
ij ∩ R̃std

` 6= ∅.
c) If j > 0 (resp. j < 0), then the linking circle g′j lodges exactly those southern (resp.

northern) minimial linking circles S ′ij where i < 0 (resp. i > 0).
d) The glissade involves modifying an anellini disc A by replacing its intersection with Pj,

which are pie cocores, with parallel copies of R0
j,5/8.

e) A pie cocore shares its boundary with a parallel copy of R0
j,5/8. It follows by Lemma

10.4 that it is isotopic to R0
j,5/8 fixing a neighborhood of its boundary pointwise, It follows

that the glissade does not change the induced framings of the boundary of the annellini discs.
f) With S21/32 viewed as an immersed 3-sphere, it follows that the glissade can be realized

as a regular homotopy.
g) Following the glissade, g′j will nest exactly those knots nested by R0

j,5/8.

h) If i < 0 and j > 0, then a southern minimal linking circle S ′ij will only nest g′j. If
instead j < 0, then S ′ij will nest exactly those southern maximal knots and g`’s nested by

R0
j,5/8.

i) If i > 0 and j < 0, then a northern minimal linking circle N ′ij will only nest g′j. If
instead j < 0, then N ′ij will nest exactly those northern maximal knots and g`’s nested by

R0
j,5/8.

This completes Step 5.

Step 6: Organize the data. By construction S1 is obtained from S0 by a carving/surgery
presentation. The various data memos record the details which we summarize now and show
that we have a F |W -carving/surgery presentation.

The passage of S0 to S1 involved modifications of S0 while: A) preparing for the Whitney
moves, B) preparing for the glissade and C) doing the glissade. The Whitney preparatory
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Figure 21. An Anellini compression after the Whitney moves

moves create the northern and southern knots and their linking circles. Each northern
or southern knot K corresponds to a γ ⊂ wij and by construction DK = Dγ. Thus the
nesting relations among the northern or southern knots arise during A) and give the relations
described in Definition 9.6 1b) and 1c). The gj’s were defined in Data Memo 10.13 as were
their spanning discs Dgj , though they weren’t created until B). By construction these gj’s
are unknotted and unlinked in S0 and the intersections of the Dgj ’s with either XN

0 or XS
0 are

also unknotted and unlinked. A DK will nest a Dgj only if it intersects Pj in filling sections

which occurs only if D̃γ ∩ R̃std
j 6= ∅, where K = Kγ. See Data Memo’s 10.14 d). These
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nestings give a possibly proper subset of the nestings described in the second and fourth
paragraphs of Definition 9.6 2a).

The spanning disc DK′ of the linking circle K ′ of a southern or northern knot K is
constructed in 3 steps. To start with we have D1

K′ the standard spanning disc constructed
in the annallini compression operation during A). The northern and southern minimal D1

K′ ’s
are isotoped during A) which induces the isotopy of the others. Let D2

K′ denote the isotoped
D1
K′ . Note that it intersects some Pj in two pie cocores of opposite sign. These pie cocores

are then replaced by copies of R0
j,5/8 to obtain DK′ . By construction D1

K′ induces the 0-

framing on K ′. Isotopy does not change that framing nor does the pie cocore replacement
by Data Memo 10.17 e). Similarly the spanning disc Dg′j

is first obtained by the anellini

compression operation to obtainD1
g′j

which intersects Pj in a single pie cocore. Dg′j
is obtained

by replacing this cocore with a copy of R0
j,5/8. The previous argument shows that it induces

the 0-framing on g′j. By construction no spanning disc of a knot nests in the spanning disc

of a linking circle. Nestings of the D1
K′ ’s induce the nestings of Definition 9.6 1b) and 1c)

and these nestings remain during the passages to the DK′ ’s. The nestings of the first and
third paragraphs of Definition 9.6 2a) arise during B), see Data Memo 10.17 c). The nestings
created during C) are a possibly proper subset of those described in Definition 9.6 a), 2b)
and 2c), see Data Memo 10.17 h) and i). This completes of Step 6 and hence the proof of
Theorem 10.1. �

As noted all steps in the transformation of S0 to S1 can be achieved through regular
homotopy and hence the following result.

Theorem 10.18. Any smooth 3-sphere in S4 is regularly homotopic to the standard 3-
sphere. �

11. Upgrading to an Optimized presentation

In this section all F |W systems are ∂-germ coinciding.

Construction 11.1. With notation as in 3.7, given the F |W system (G,R,F ,W) with R
in AHF form, then let S′ denote the 3-sphere π−1(1/2) ⊂ Vk. By passing to a finite cover we
can assume that Maxi,j{Diam(π(Ri)), Diam(π(wj))} < k/100 for all Ri ∈ R and wj ∈ W .

Construct Ŝ as follows. If Ri ∩ Gj 6= ∅, where i ∈ [1, k/100] and j ∈ [0,−k/100] (resp.

i ∈ [0,−k/100] and j ∈ [1, k/100]), then do a finger move of S′ into Gj. Our Ŝ is the result

of these finger moves. Let B̂K denote Ŝ ∩ G.

Remarks 11.2. i) There is an ambient isotopy Ft of Vk such that F1(S′) = Ŝ and F1(Rstd) =
R.

ii) After passing to Ṽk, Ŝ will become our S′3/8 in the proof of Theorem 10.1.

Definition 11.3. The F |W system (G,R,F ,W) is Ŝ adapted if Ŝ arises from Construction

11.1 and for every wi ∈ W , wi ∩ Ŝ is a union of simple closed curves αi1 , · · · , αip such that
i) For all j, level (αij) ≤ 2, where level is calculated within wi.
ii) If Dij ⊂ wi is the disc bounded by αij , then Dij induces the 0-framing on αij .

iii) The αij ’s are the disjoint union of A ∪B where A ∪ B̂L and B ∪ B̂L are unlinks in Ŝ.

iv) B includes all the level-2 curves and if αij ⊂ B, then Dij ∩Rstd = ∅.
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Lemma 11.4. If (G,R,F ,W) satisfies the conclusion of Proposition 8.2 and together with Ŝ
are as in Construction 11.1, thenW can be isotoped to be Ŝ-adapted, via an isotopy supported
away from R∪ G.

Proof. We first show that if (G,R,F ,W) is ∂-germ coinciding, then W can be isotoped to
satisfy

i’) For all j, level (αij) ≤ 2, where level is calculated within wi.

ii’) If level (αij) = 2 and Dij ⊂ wi is the disc bounded by αij , then Dij ∩Rstd = ∅.
iii’) The level-2 curves αij bound pairwise disjoint embedded discs Fij ⊂ Ŝ \ G.
The idea is to attempt to do ∂-compressions to W along pairwise disjoint embedded discs

to reduce W ∩ Ŝ to a collection of level-1 curves. In practice, interiors of these discs may
intersect W . Isotoping these intersections away will create embedded discs at the cost of
new intersections ofW with Ŝ. Some of them will be level-2, however their intersections will
satisfy ii’) and iii’).

Let O(W) ⊂ W consist ofW∩ Ŝ together with those points separated from ∂W by an odd

number of components ofW∩ Ŝ. Let β1, · · · , βn ⊂ O(W) denote pairwise disjoint embedded
arcs that cut O(W) into discs. Let E1, · · · , En be immersed discs such that ∂Ei = βr ∪ γr
where γr ⊂ Ŝ, int(Ei) ∩ Ŝ = ∅ and π(Ei) ⊂ [−k/20, k/20]. These discs might not be suitable
because they may a) intersect G, b) intersect R, c) intersect each other, d) have the wrong
framing, and e) intersectW in their interiors. By rechoosing γr so that a pushoff of the loop

γr∪βr is null homotopic in Vk \(Ŝ∪G) we address a). If x ∈ Ei∩Rj, then let R′j be a parallel

copy of Gj that intersects R once and is disjoint from Ŝ. Tube off a neighborhood of x ∈ Ei
with a copy of R′j using an arc from x to Rj ∩ R′j. This will likely create new intersections
with W and the Ej’s. To address c) do finger moves to the Ei’s to make them embedded
at the cost of creating new intersections with W . To address d) do ∂-twisting as in [FQ]
(see also [E]). Again the cost is new intersections with W . Finally for each x ∈ int(Ei)∩W
choose pairwise disjoint arcs δx ⊂ Ei \ (βi ∪Rstd) from x to Ŝ. Do finger moves to W along
the δx’s and then a bit further to make (∪ int(Ei))∩W = ∅. Denote the new components of

W∩ Ŝ corresponding to x by εx. Here we abused notation by having W denote the modified
W . Note that each component ofW∩ Ŝ is now level-≤ 2 and the level-2 ones are among the
εx’s. By construction each εx bounds a disc Dx ⊂ W disjoint from Rstd and the εx’s bound
pairwise disjoint discs in Ŝ disjoint from G.

Now assume that (G,R,F ,W) satisfies the conclusion of Proposition 8.2. We now modify

the previous argument to isotope the plates so that their intersections with Ŝ satisfy i’), ii’)
and iii’), where level (resp. subdisc) is calculated (resp. constructed) within the plates. We
also have iv’): the Dx’s are disjoint from the concordance 1-handles. To start with if P is
a plate, then define O(P ) analogously as above to O(W). Next choose βi’s as above to be
disjoint from (int(1-handles) ∩ plates) and then choose Ei’s as above to be disjoint from G.
These Ei’s may intersect the bases and the beams, but such intersections can be eliminated
at the cost of new intersections with R. Next eliminate as above all the intersections of the
Ei’s with R at the cost of creating new intersections among the Ei’s and Ei’s with the plates.
Similarly eliminate the Ei/Ej intersections at the cost of creating new intersections of the
Ei’s and the plates. We can assume that the plate/plate intersections are disjoint from the
1-handles, although the Ei’s themselves may intersect them. Now complete the argument
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Figure 22. A beam compression

as in the previous paragraph. Note that the Dx’s lie very close to Ŝ and hence are disjoint
from the 1-handles.

For each beam let Db be a cocore of the corresponding 3-dimensional 2-handle. For each
component Q of O(P ) let γq ⊂ P be a path disjoint from Rstd from Q to a parallel copy
Dq of Db. Note that Q is a planar surface corresponding to two parallel copies Q′, Q′′ ⊂ W .
Let ∂eQ denote the component of ∂Q intersecting γq and DQ the disc in P bounded by ∂eQ.
Similarly define ∂eQ

′, ∂eQ
′′, DQ′ and DQ′′ . Now for each Q, do boundary compressions of W

into Ŝ following Dq ∪γq, simultaneously moving neighborhoods of intDq ∩W out of the way,
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thereby creating new intersections of W with Ŝ that are also denoted εx’s. The boundary
compression bands together Q′ and Q′′ to obtain Q∗ where the band connects ∂eQ

′ to ∂eQ
′′.

Denote by ∂eQ
∗ its new exterior boundary and DQ∗ its new disc. See Figure 22. Figures a)

and b), c) and d), e) and f) show various 3-dimensional slices before and after the boundary
compression. The resultingW satisfies the conclusion of the lemma. Note that all the ∂eQ

∗’s
are level-1 and the new and old εx’s are level-≤ 2. Here B is the union of the εx’s which
by construction satisfy iii) and iv) and A is the union of the ∂eQ

∗’s which together with

BL is also an unlink. Indeed, ∂eQ
′ ∪ ∂eQ′′ bound a thin annulus ⊂ Ŝ disjoint from B̂L and

∂eQ
∗ = ∂EQ∗ ⊂ Ŝ where EQ∗ is the result of cutting this annulus along an arc. Since there is

a regular homotopy of DQ∗ to EQ∗ fixing the boundary pointwise, DQ∗ induces the 0-framing
on ∂eQ

∗. �

Corollary 11.5. If φ ∈ Diff0(S1 × S3), then φ is S-equivalent to φ(G,R,F ,W) where the

F |W system satisfies the conclusion of Proposition 8.2 and is Ŝ-adapted. �

Theorem 11.6. If S is a smooth 3-sphere in S4, then S has an optimized FWCS presenta-
tion.

Proof. Apply the proof of Theorem 10.1 to a Ŝ adapted F |W system. Condition i) of
Definition 11.3 follows from i) of Lemma 11.4. The proof of Theorem 10.1 shows that if
k ∈ BL, then Dk is a standard disc and hence k is 0-framed, otherwise the framing is
induced by Dk the disc in W bounded by k and hence Condition ii) follows from ii) of
Lemma 11.4. Under the natural correspondence of A with A and B with B, Condition iii)
follows from iii) of the lemma. Finally by construction, every k ∈ B bounds an innermost

disc of W ∩ Ŝ which is disjoint from Rstd and hence Condition iv) follows. �

12. Embedding Poincare Balls in S4

By Poincare 4-ball we mean a contractible 4-manifold whose boundary is S3. A Schoenflies
4-ball is a Poincare 4-ball that embeds in S4. It is well known that the smooth 4-dimensional
Poincare conjecture (SPC4) follows from the Schoenflies conjecture and the Poincare ball
embedding conjecture, i.e. “every Poincare 4-ball embeds in S4”.

The goal of this section is to highlight three approaches towards the embedding conjecture.
One classical and the other two based on the methods of this paper.

Conjecture 12.1. If ∆4 is a Poincare ball, then ∆4 × I is diffeomorphic to B5 and hence
is a Schoenflies ball.

Remarks 12.2. i) Since a contractible 5-manifold with boundary S4 is the 5-ball, p. 395
[Sm2], ∆4×I = B5 is equivalent to the double D(∆4) of ∆4 being diffeomorphic to S4. Note
that ∂(∆4 × I) = ∆4 ∪∂ ∆̄4.

ii) Conjecture 1.13 is exactly that Conjecture 12.1 holds for Schoenflies balls.

The following is a special case of the Gluck conjecture, that a Gluck twisted S4 is diffeo-
morphic to S4.

Conjecture 12.3. If ∆4 is a Gluck ball, then ∆4 × I = B5.

A classical approach to Conjecture 12.1, which we first learned from Valentin Poenaru, is
to prove the following two notorious conjectures. See 4.89 [Ki2].
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Conjecture 12.4. i) If ∆4 is a Poincare ball, then ∆4× I has a handle decomposition with
only 0, 1 and 2-handles.

ii) If ∆5 is contractible and built from 0, 1 and 2-handles, then ∆5 = B5.

Remarks 12.5. A stronger form of i) is that ∆4 itself has a handle decomposition with only
0,1 and 2-handles.

ii) The Andrews - Curtis conjecture implies Conjecture 12.4 ii), however, the Akbulut -
Kirby presentations [AK] are potential Andrews - Curtis counterexamples and all but the
simplest ones are conjectured by Gompf [Go] to be pairwise AC inequivalent. On the other
hand, Gompf [Go] has shown that ∆5’s arising from these presentations are 5-balls. It would
be interesting to have more results in this direction. A presentation of the trivial group gives
rise to a unique 5-manifold with 0,1 and 2-handles inducing that presentation, so we have
the following.

Problem 12.6. Show that the Miller-Schupp [MS] presentation 〈x, y|x−1y2x = y3, x = w〉,
where the exponent sum of x in w equals 0, gives B5.

Remark 12.7. For other presentations of the trivial group see [Br] and [Li].

We now describe a second approach to the Poincare ball embedding conjecture.

Notation 12.8. Let H1 = (W1, B
4,∆4, q1, v1) be a relative h-cobordism between a 4-ball

and a Poincare ball with Morse function q1 having only k critical points of index-2 and k
of index-3 with gradient like vector field v1 and all the index-2 critical points occur before
those of index-3. Express the middle level as B4#kS

2 × S2 where G1 = {G1, · · ·Gk} are the
ascending spheres of the 2-handles with Gi = S2× y0 ⊂ S2×S2

i , the i’th S2×S2 factor. Let
R1 = {R1, · · · , Rk} denote the descending spheres of the 3-handles. We can assume that
with appropriate orientations 〈Ri, Gj〉 = δij. Let Rstd

i denote x0 × S2 ⊂ S2 × S2
i . Let α

a nonsingular flow line from int(B4) to int(∆4) and let B4
0 , ∆4

0 respectively denote B4 \ α,
∆4 \ α.

Definition 12.9. The relative h-cobordism H1 is stably trivial if it can be modified as in i),
ii) below to satisfy condition iii).

i) Let W2 = W1 \ α. Construct the the proper h-cobordism H2 := (W2, B
4
0 ,∆

4
0, q2, v2)

with q2 and v2 obtained by adding in the standard way an infinite locally finite sequence of
canceling critical points of index-2 and 3. The middle level ofH2 is B4

0#∞S
2×S2, G1 extends

to G2 = {G1, G2, · · · } where Gi = S2 × y0 ⊂ S2 × S2
i and R1 extends to R2 := {R1, R2, · · · }

where for j ≤ k,Rj is as before and for j > k,Rj = x0 × S2 ⊂ S2 × S2
j .

ii) Modify v2 to v3 so that the new set of descending spheres in the middle level becomes
R3 := {R3

1, R
3
2, · · · } where R3

j is obtained from Rj by applying finitely many finger moves

into the Gi’s and the totality of finger moves is locally finite. Let G3 denote G2 and q3 denote
q2.

iii) There exists a locally finite set W3 of Whitney discs between R3 and G3 such that ap-
plying Whitney moves toR3 using these discs yieldsR4 where R4

i intersects G3
j geometrically

δij.

Theorem 12.10. The Poincare ball ∆4 is a Schoenflies ball if and only if there is a relative
h-cobordism H = (W,B4,∆4, q, v) which is stably trivial.
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Proof. First assume that H is stably trivial. Let α be a nonsingular flow line of the
glvf v which goes from int(B4) to int(∆4). Obtain a proper relative h-cobordism H1 =
(W1, B

4
0 ,∆

4
0, q1, v1) by restricting to the complement of α. Next change (q1, v1) to (q2, v2)

to (q3, v3) according to i) and ii) and then to (q4, v4), where q2 = q3 = q4, to realize the
Whitney moves using the discs of iii). Finally, modify to (q5, v5) by cancelling the critical
points of index-2 and 3. The resulting q5 and v5 are nonsingular and each flow line of v5

is compact. Indeed, all the modifications (qi, vi) → (qi+1, vi+1) can be chosen to be locally
finite and supported away from neighborhoods of B4

0 and ∆4
0. When i = 1, the support is in

small neighborhoods of nonsingular flow lines α1, α2, · · · that approach α. When i = 2, the
support is in small neighborhoods of the arcs defining the finger moves. When i = 3, the
support is in a small neighborhood of the Whitney discs and when i = 4, the support is in
a small neighborhood of the flow lines from the j’th index-2 critical point to the j’th index-3
critical point. The nonsingular vector field v5 induces a diffeomorphism between B4

0 and ∆4
0.

It follows by Theorem 1.15 that ∆4 is a Schoenflies ball.
We now prove the converse. By Proposition 1.10 there exists φ ∈ π0(Diff0(S1 × S3))

that gives rise to the Schoenflies balls ±∆4. By Corollary 3.5, φ = φ(G,R,F ,W). By
Proposition 6.1 after possibly replacing φ by an S-equivalent one, we can assume that F and
W coincide near their boundaries. Let f be the pseudo-isotopy from id to φ arising from this
F |W structure and v the vector field on S1 × S3 × I inducing f . Recall that the green and
red spheres of this F |W structure arise as the ascending and descending spheres seen in the
middle level of a handle structure on S1×S3×I arising from a Morse function q1 with glvf v1.
This handle structure lifts to one on R×S3× I. Do Whitney moves to all the W̃ discs near
one end and all the F̃ discs near the other to obtain (q̃2, ṽ2). There should be far separation
from the subsets of W̃ and F̃ used. All but finitely many of the ascending spheres of the
2-handles meet the descending spheres of the 3-handles δij. Cancel all of the δij 2-handles
with their corresponding 3-handles to obtain (q̃3, ṽ3). Done appropriately, ṽ3 coincides with
the vector field ṽ on the end where W̃ was used and with the vertical vector field on the other
end. Also q̃3 is the standard projection near that end. Therefore, R×S3×I compactifies to a
relative an h-cobordism between B̂4 and one of ±∆̂4, where “hat” denotes “remove an open
4-ball”. Further, (q̃3, ṽ3) extends to (q4, v4) on the relative h-cobordism. Fill in a 4-ball×I
on the end where F̃ was used to obtain a relative h-cobordism between B4 and ±∆4 with
(q5, v5). Here q5 is the standard projection on the filled in B4×I. Note that had we switched
which end to use the F̃ or W̃ discs we would have obtained ∓∆4. Uncompactifying the end
corresponding to the F Whitney moves i.e. removing the int(B4)× I), undoing the handle
cancellations on that end and redoing the finger moves achieves i), ii). The unused discs
from W̃ provide the discs needed for iii). �

Here is a third approach using carvings.

Definition 12.11. A 4-manifold M has a carving/2-handle presentation if it is obtained
from B4 by first attaching 2-handles to ∂B4 to obtain B′ and then carving 2-handles from
B′.

Remark 12.12. We can assume that the boundary of the carved 2-handles ⊂ ∂B4. We
allow the the carved 2-handles to pass through the attaching 2-handles.

Theorem 12.13. Every Poincare ball has a carving/2-handle presentation.
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Proof. Let P be a Poincare ball. Since for k sufficiently large P#kS
2 × S2 is diffeomorphic

to B4#kS
2×S2, it follows that the manifold Pk obtained by attaching 0-framed 2-handles to

k split Hopf links on ∂P is diffeomorphic to the manifold Bk obtained by attaching 0-framed
2-handles to k split Hopf links on ∂B4. Let φ : Pk → Bk denote such a diffeomorphism
and let C (resp. C ′) denote the 2k cocores (resp. cores) of the first (resp. second) set of
2-handles. It follows that we can obtain P from Pk by carving the 2k cocores C of the 2k
0-framed 2-handles. Therefore P is obtained from B4 by attaching the 2-handles C ′ and
then carving the 2-handles φ(C). �

Remark 12.14. To prove the Poincare ball embedding conjecture it suffices to show that a
carving/2-handle presentation of the Poincare ball P can be upgraded to a carving/surgery
presentation. However, even doing this in the simplest nontrivial case would be a great
accomplishment. I.e. where the union of the boundary of the core of the 2-handle and the
boundary of the core of the carving form the Hopf link and the 2-handle is +1 framed. A
positive solution implies that Gluck balls embed in the 4-sphere. Compare with Problem
4.23 of [Ki1] and Question 10.16 [Ga1].
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